Holding Productivity Accountable

Business Dynamism and Productivity

Calvin He

30 November 2018
UNSW EMG Workshop

Disclaimer: Views expressed in this presentation are those of the author and not necessarily those of the Reserve Bank of Australia. Use of any results from this presentation should clearly attribute the work to the author/s and not to the Reserve Bank of Australia.
Labour Productivity*

Non-farm GDP per hour, March 1991 = 100, log scale, quarterly

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>100</td>
<td>118.70</td>
<td>119.67</td>
<td>121.50</td>
</tr>
</tbody>
</table>

*Black line represents a fitted line; numbers represent the annual geometric mean.

Sources: ABS; RBA
Role of business dynamism

• Literature on the importance of business dynamism has grown.
• Declining allocative efficiency – Riley, Rosazza-Bondibene and Young (2015)
• Decline of start-ups and entrepreneurship - Decker, Haltiwanger, Jarmin and Miranda (2016)
Question

• What is the role of business dynamism in Australian productivity growth?
Business dynamism

I consider two forms of business dynamism:

1) External – Exits and entries
2) Internal – Reallocation of resources from less productive to more productive firms
Data & Methodology

- Business Activity Statements (BAS) from BLADE.
- Coverage: Any business registered for GST
- Sample: FY 2001/02 - 2014/15
- Diewert and Fox 2010 decomposition
Decomposition – Diewert and Fox 2010

• Let labour productivity for firm i in period t be:
 \[\Phi_{i,t} = \frac{y_{i,t}}{l_{i,t}} \]

• For each time period (t), let there be three groups:
 1) Entrants (e)
 2) Exits (x)
 3) Survivors (s)

• Productivity for a given group (g) in period t can be expressed as:
 \[\Phi_{g,t} = \sum_{i \in g} \frac{l_{i,t}}{\sum_{d \in g} l_{d,t}} \Phi_{i,t} = \sum_{i \in g} \omega_{i,g,t} \Phi_{i,t} \]
Decomposition – Diewert and Fox 2010

• Using some algebra we can decompose the change in productivity as:

\[
\Delta \Phi_t = \Delta \Phi_{s,t} + \sum_{i \in e} \omega_{i,e,t} (\Phi_{i,t} - \Phi_{s,t}) + \sum_{j \in e} \omega_{j,x,t-1} (\Phi_{s,t-1} - \Phi_{j,t-1})
\]

Where:
• \(\Omega_{g,t} \) is the employment share of the group \(g \) relative to aggregate employment
Decomposition – Diewert and Fox 2010

• Using some algebra we can decompose the change in productivity as:

\[
\Delta \Phi_t = \Delta \Phi_{s,t} + \Omega_{e,t} \sum_{i \in e} \omega_{i,e,t} (\Phi_{i,t} - \Phi_{s,t}) + \Omega_{x,t-1} \sum_{j \in x} \omega_{j,x,t-1} (\Phi_{s,t-1} - \Phi_{j,t-1})
\]

Where:

• \(\Omega_{g,t} \) is the employment share of the group g relative to aggregate employment
• Contribution of survivors can be decomposed further

\[\Delta \Phi_{s,t} = 0.5 \sum_{k \in s} (\omega_{k,s,t} + \omega_{k,s,t-1})(\Phi_{k,t} - \Phi_{k,t-1}) + 0.5 \sum_{k \in s} (\omega_{k,s,t} - \omega_{k,s,t-1})(\Phi_{k,t} + \Phi_{k,t-1}) \]

within-change in productivity level

between-change in labour shares
Decomposition – Diewert and Fox 2010

\[\Delta \Phi_t = \text{survivor contribution} + \text{entrant contribution} + \text{exit contribution} \]

\[= \text{common productivity} + \text{internal dynamism} + \text{external dynamism (entrants + exits)} \]
A few caveats

- Financial, agriculture and public sector are excluded
- Negative GVA firms are zeroed
- Outliers have been trimmed
- Entrants are not necessarily new firms
- Exits haven’t necessarily exited.
Aggregate
All sectors
Productivity Growth by Industry
Average 2002 to 2015

- Mining
- Accommodation
- TPW
- RHR
- Education
- Admin
- Other
- Manufacturing
- Retail
- Professional
- Wholesale Trade
- Health
- Arts
- IMT
- Utilities
- Construction

- Dots represent average productivity growth.
- RHR is Rental, Hiring and Real Estate; TPW is Transport, Postal and Warehousing; IMT is Information Media and Telecommunications.

Sources: ABS; RBA
Survivor Productivity Growth by Industry

Average 2002 to 2015

Mining
Education
Accomodation
Admin
TPW
RHR
Other
Manufacturing
Professional
Retail
Wholesale Trade
Health
IMT
Utilities
Construction
Arts

Dots represent average survivor productivity growth.

** RHR is Rental, Hiring and Real Estate; TPW is Transport, Postal and Warehousing; IMT is Information Media and Telecommunications.

Sources: ABS; RBA
Discussion

• Over time survivors have driven productivity growth
 – Common factor dominates
 – Internal dynamism is consistently positive but small
 – Exits added to productivity growth by exiting
 – Entrants subtract from productivity growth

• Industry level analysis reveals the importance of internal business dynamism
Do entrants subtract from productivity?

- The decomposition can only classify a business as an entrant in its first year.
- Ignores subsequent contribution of entrants.
Future research

- Age, cohort, time analysis
- Survivor modelling
- Drivers in the volatility of survivors productivity
References

Comments or Questions?