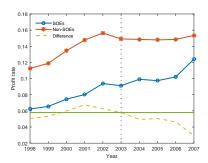
Shengyu Li¹ Hongsong Zhang²

¹UNSW

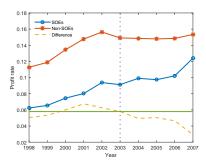

²University of Hong Kong

November, 2018

•000000

Like in many countries, Chinese state-owned enterprises (SOEs), compared with private firms in manufacturing industries, are:

- larger more capital stock and advantages in technology;
- underperforming lower profitability and productivity (Jefferson and Rawski, 1994; Xu, 2011; Brandt, et al., 2012);



•000000

Like in many countries, Chinese state-owned enterprises (SOEs), compared with private firms in manufacturing industries, are:

- larger more capital stock and advantages in technology;
- underperforming lower profitability and productivity (Jefferson and Rawski, 1994; Xu, 2011; Brandt, et al., 2012);

Nonetheless, the gap has narrowed down over time, especially after 2003 (Hsieh and Song, 2015; Berkowitz et al., 2018).

0000000

Traditional focuses and explanations:

- ▶ internal incentivization/ effect of privatization: Groves, et al, 1994; Li, 1997; Estrin, et al, 2009; Chen, et al, 2017;
- ► roles of labor and capital inputs: Firth et al., 2009; Song et al., 2011; Berkowitz et al., 2018.

But an important perspective from corporate governance is much less explored:

- ▶ SOEs face ineffective external monitoring on their management, due to:
 - unclear property rights ("owned by all the people");
 - weak legal enforcement arising from strong political connections.
- ► This may lead to higher prices of intermediate material inputs and lower productivity of SOEs.

0000000

Motivation

Traditional focuses and explanations:

- ▶ internal incentivization/ effect of privatization: Groves, et al, 1994; Li, 1997; Estrin, et al, 2009; Chen, et al, 2017;
- ▶ roles of labor and capital inputs: Firth et al., 2009; Song et al., 2011; Berkowitz et al., 2018.

But an important perspective from corporate governance is much less explored:

- ▶ SOEs face ineffective external monitoring on their management, due to:
 - unclear property rights ("owned by all the people");
 - weak legal enforcement arising from strong political connections.
- ► This may lead to higher prices of intermediate material inputs and lower productivity of SOEs.

Research Question

How does external monitoring from government influence SOE performance, by affecting managerial expropriation in procurement (material input prices) and shirking in production management (productivity)?

Weak monitoring \Longrightarrow Procurement corruption \Longrightarrow Higher input prices \Downarrow Managerial shirking \Longrightarrow Lower productivity \Longrightarrow Weaker performance

0000000

- An indispensable component in corporate governance to reduce managerial expropriation and shirking (Becker, 1968; Allingham and Sandmo, 1972).
- Weak external monitoring leads to SOE managers' opportunistic behaviors: corruption in material procurement and shirking in production management; ⇒ higher material input prices and lower productivity;

⇒ lower profitability

Why Focus on External Monitoring?

- An indispensable component in corporate governance to reduce managerial expropriation and shirking (Becker, 1968; Allingham and Sandmo, 1972).
- Weak external monitoring leads to SOE managers' opportunistic behaviors: corruption in material procurement and shirking in production management;
 - ⇒ higher material input prices and lower productivity;
 - ⇒ lower profitability.

Why Care Material Input Prices?

- 1. Large heterogeneity across firms (Ornaghi, 2006; Atalay, 2014);
- 2. Biased productivity estimate if material prices heterogeneity is ignored;
- 3. A direct channel through which external monitoring has an impact
- Large potential gains: material input accounts for a significant part of total variable costs (80-90%).

Why Care Material Input Prices?

- 1. Large heterogeneity across firms (Ornaghi, 2006; Atalay, 2014);
- 2. Biased productivity estimate if material prices heterogeneity is ignored;
- 3. A direct channel through which external monitoring has an impact
- 4. Large potential gains: material input accounts for a significant part of total variable costs (80-90%).

Why Care Material Input Prices?

- 1. Large heterogeneity across firms (Ornaghi, 2006; Atalay, 2014);
- 2. Biased productivity estimate if material prices heterogeneity is ignored;
- 3. A direct channel through which external monitoring has an impact;
- 4. Large potential gains: material input accounts for a significant part of total variable costs (80-90%).

Why Care Material Input Prices?

- 1. Large heterogeneity across firms (Ornaghi, 2006; Atalay, 2014);
- 2. Biased productivity estimate if material prices heterogeneity is ignored;
- 3. A direct channel through which external monitoring has an impact;
- 4. Large potential gains: material input accounts for a significant part of total variable costs (80-90%).

0000000

- ► Need to identify the mechanism from many firm performance drivers/policies involved;
- Our data—like most manufacturing survey datasets—does not include firm-level data on material input prices.
- ► Even if input prices are observed, they are usually not readily comparable, because firms choose input quality which vary by firm and is unobserved.

- ▶ Study the impacts of external monitoring on SOE performance directly.
- …through two distinct channels: material input prices and productivity.
- Document the gaps between SOEs and non-SOEs in terms of both materia input prices and productivity.
- ▶ Investigate the causality between external monitoring and SOE performance, using variations of monitoring strength in both time and spatial dimensions.
- ▶ We show that monitoring enhancement can be an alternative policy tool to improve SOE performance.

- ▶ Study the impacts of external monitoring on SOE performance directly.
- …through two distinct channels: material input prices and productivity.
- Document the gaps between SOEs and non-SOEs in terms of both materia input prices and productivity.
- Investigate the causality between external monitoring and SOE performance, using variations of monitoring strength in both time and spatial dimensions.
- We show that monitoring enhancement can be an alternative policy tool to improve SOE performance.

- ▶ Study the impacts of external monitoring on SOE performance directly.
- …through two distinct channels: material input prices and productivity.
- Document the gaps between SOEs and non-SOEs in terms of both material input prices and productivity.
- Investigate the causality between external monitoring and SOE performance, using variations of monitoring strength in both time and spatial dimensions.
- We show that monitoring enhancement can be an alternative policy tool to improve SOE performance.

- ▶ Study the impacts of external monitoring on SOE performance directly.
- …through two distinct channels: material input prices and productivity.
- Document the gaps between SOEs and non-SOEs in terms of both material input prices and productivity.
- Investigate the causality between external monitoring and SOE performance, using variations of monitoring strength in both time and spatial dimensions.
- We show that monitoring enhancement can be an alternative policy tool to improve SOE performance.

- Study the impacts of external monitoring on SOE performance directly.
- …through two distinct channels: material input prices and productivity.
- Document the gaps between SOEs and non-SOEs in terms of both material input prices and productivity.
- ▶ Investigate the causality between external monitoring and SOE performance, using variations of monitoring strength in both time and spatial dimensions.
- ▶ We show that monitoring enhancement can be an alternative policy tool to improve SOE performance.

SOE Reform and External Monitoring

Waves of SOE reform:

- 1. 1978-1984: management reform greater autonomy and retaining profits.
- 2. 1985-1992: market-orientated reform increased competition.
- 3. 1993-: ownership reform privatization.

Fundamental problems of external monitoring remain.

- individuals do not have incentive to monitor.
- weak monitoring from government:
 - multiple departments jointly supervise, shirking responsibility.

Waves of SOE reform:

- 1. 1978-1984: management reform greater autonomy and retaining profits.
- 2. 1985-1992: market-orientated reform increased competition.
- 3. 1993-: ownership reform privatization.

Fundamental problems of external monitoring remain:

- individuals do not have incentive to monitor.
- weak monitoring from government.
 - multiple departments jointly supervise, shirking responsibility.

Waves of SOE reform:

- 1. 1978-1984: management reform greater autonomy and retaining profits.
- 2. 1985-1992: market-orientated reform increased competition.
- 3. 1993-: ownership reform privatization.

Fundamental problems of external monitoring remain:

- individuals do not have incentive to monitor.
- weak monitoring from government:
 - multiple departments jointly supervise, shirking responsibility.

Implications of Weak Monitoring

SOE managers had the ultimate control (insider control problem) \rightarrow

- higher material prices, due to managers'
 - corruption and kickbacks in material procurement (Cheng, 2004);
 - conduct self-dealing and relational transactions;
 - shirk in bargaining for better material prices in the input market.

Implications of Weak Monitoring

SOE managers had the ultimate control (insider control problem) \rightarrow

- higher material prices, due to managers'
 - corruption and kickbacks in material procurement (Cheng, 2004);
 - conduct self-dealing and relational transactions;
 - shirk in bargaining for better material prices in the input market.
- lower productivity, due to managers'
 - directly shirking in production management.

To strengthen monitoring and management of SOEs, the State Council of China announced the establishment of State-owned Assets Supervision and Administration Commission (SASAC):

- established in March 2003
- single powerful department with full responsibility for SOE performance.
- ▶ hierarchy: central, provincial, and prefecture-level SASAC offices;
- each SOE is supervised by one of the SASAC offices, depending on the level of its oversight/affiliated government.

To strengthen monitoring and management of SOEs, the State Council of China announced the establishment of State-owned Assets Supervision and Administration Commission (SASAC):

- established in March 2003;
- single powerful department with full responsibility for SOE performance.
- hierarchy: central, provincial, and prefecture-level SASAC offices
- each SOE is supervised by one of the SASAC offices, depending on the level of its oversight/affiliated government.

A Nationwide Policy Shock: SASAC

To strengthen monitoring and management of SOEs, the State Council of China announced the establishment of State-owned Assets Supervision and Administration Commission (SASAC):

- established in March 2003;
- single powerful department with full responsibility for SOE performance;
- hierarchy: central, provincial, and prefecture-level SASAC offices;
- each SOE is supervised by one of the SASAC offices, depending on the level of its oversight/affiliated government.

To strengthen monitoring and management of SOEs, the State Council of China announced the establishment of State-owned Assets Supervision and Administration Commission (SASAC):

- established in March 2003;
- single powerful department with full responsibility for SOE performance;
- ▶ hierarchy: central, provincial, and prefecture-level SASAC offices;
- each SOE is supervised by one of the SASAC offices, depending on the level of its oversight/affiliated government.

10

A Nationwide Policy Shock: SASAC

To strengthen monitoring and management of SOEs, the State Council of China announced the establishment of State-owned Assets Supervision and Administration Commission (SASAC):

- established in March 2003:
- single powerful department with full responsibility for SOE performance;
- ▶ hierarchy: central, provincial, and prefecture-level SASAC offices;
- each SOE is supervised by one of the SASAC offices, depending on the level of its oversight/affiliated government.

Preview of Empirical Results

Findings:

- ► Gaps: SOEs' productivity is lower by 20% and they pay 6.4% higher input prices compared with non-SOEs;
- Evidence of causality
 - ► Time dimension: SASAC narrowed down the gaps in input prices and productivity by one-half;
 - ► Spatial dimension: SOEs far away to their oversight governments have lower productivity and pay higher input prices.
- ► Catch-up: Strengthened external monitoring significantly contributed to the catch-up of SOEs to non-SOEs.

Implication

▶ Monitoring enhancement as an alternative way of privatization.

Findings:

- ► Gaps: SOEs' productivity is lower by 20% and they pay 6.4% higher input prices compared with non-SOEs;
- Evidence of causality:
 - ► Time dimension: SASAC narrowed down the gaps in input prices and productivity by one-half;
 - ► Spatial dimension: SOEs far away to their oversight governments have lower productivity and pay higher input prices.
- ► Catch-up: Strengthened external monitoring significantly contributed to the catch-up of SOEs to non-SOEs.

Implication

▶ Monitoring enhancement as an alternative way of privatization.

11

Findings:

- ► Gaps: SOEs' productivity is lower by 20% and they pay 6.4% higher input prices compared with non-SOEs;
- ► Evidence of causality:
 - ► Time dimension: SASAC narrowed down the gaps in input prices and productivity by one-half;
 - ► Spatial dimension: SOEs far away to their oversight governments have lower productivity and pay higher input prices.
- ► Catch-up: Strengthened external monitoring significantly contributed to the catch-up of SOEs to non-SOEs.

Implication

▶ Monitoring enhancement as an alternative way of privatization.

Findings:

- ► Gaps: SOEs' productivity is lower by 20% and they pay 6.4% higher input prices compared with non-SOEs;
- Evidence of causality:
 - ► Time dimension: SASAC narrowed down the gaps in input prices and productivity by one-half;
 - ► Spatial dimension: SOEs far away to their oversight governments have lower productivity and pay higher input prices.
- Catch-up: Strengthened external monitoring significantly contributed to the catch-up of SOEs to non-SOEs.

Implication:

▶ Monitoring enhancement as an alternative way of privatization.

Data: Chinese Manufacturing Industries

Firm-level survey from National Bureau of Statistics in China (1998-2007)

- ▶ all SOEs and non-SOEs with annual sales above 600,000 USD;
- ▶ 326,294 firms in total across 19 two-digit (SIC) manufacturing industries;
- ➤ 35,551 SOEs: state ownership over 30%, following Huang et al. (AER, 2018);
- ► firm-level total sales, number of workers, wage expenditure, material expenditure, capital stock, ownership, location, industry, etc.

Construction of Key Measures

Three key measures at the firm-level:

input price and productivity using Grieco, Li, and Zhang (2016, 2018).

Empirical Analysis

- ► Grieco, Li, and Zhang (IER, 2016):
 - biased production estimation if input prices heterogeneity ignored;
 - estimate production functions with unobserved input prices
- ► Grieco, Li, and Zhang (2018):
 - take firms endogenous choices of material quality into account;
 - produce quality-adjusted measures of input prices and productivity.
- total factor productivity (TFP) using Levinsohn and Petrin (2003), without

Three key measures at the firm-level:

- input price and productivity using Grieco, Li, and Zhang (2016, 2018).
 - ► Grieco, Li, and Zhang (IER, 2016):
 - biased production estimation if input prices heterogeneity ignored;
 - estimate production functions with unobserved input prices heterogeneity.
 - ► Grieco, Li, and Zhang (2018):
 - take firms endogenous choices of material quality into account;
 - produce quality-adjusted measures of input prices and productivity.
- ▶ total factor productivity (TFP) using Levinsohn and Petrin (2003), without controlling for input price heterogeneity, a safeguard of our analysis.

Three key measures at the firm-level:

- input price and productivity using Grieco, Li, and Zhang (2016, 2018).
 - ► Grieco, Li, and Zhang (IER, 2016):
 - biased production estimation if input prices heterogeneity ignored;
 - estimate production functions with unobserved input prices heterogeneity.
 - ► Grieco, Li, and Zhang (2018):
 - take firms endogenous choices of material quality into account;
 - produce quality-adjusted measures of input prices and productivity.
- ▶ total factor productivity (TFP) using Levinsohn and Petrin (2003), without controlling for input price heterogeneity, a safeguard of our analysis.

Three key measures at the firm-level:

- input price and productivity using Grieco, Li, and Zhang (2016, 2018).
 - ► Grieco, Li, and Zhang (IER, 2016):
 - biased production estimation if input prices heterogeneity ignored;
 - estimate production functions with unobserved input prices heterogeneity.
 - Grieco, Li, and Zhang (2018):
 - take firms endogenous choices of material quality into account;
 - produce quality-adjusted measures of input prices and productivity.
- ▶ total factor productivity (TFP) using Levinsohn and Petrin (2003), without controlling for input price heterogeneity, a safeguard of our analysis.

Setup of the Empirical Model

Demand function:

$$P_{it} = \left(Q_{it}\right)^{1/\eta}.$$

Production function:

$$Q_{jt} = \tilde{\Omega}_{jt} \left[\alpha_L L_{jt}^{\gamma} + \alpha_M M_{jt}^{\gamma} + \alpha_K K_{jt}^{\gamma} \right]^{\frac{1}{\gamma}}.$$

Firm capability following Kugler and Verhoogen (2009, 2012):

$$ilde{\Omega}_{jt} = \left[\Omega_{jt}^{ heta} + H_{jt}^{ heta}\right]^{rac{1}{ heta}}.$$

Input price menu:

$$\tilde{P}_{Mit} = P_{Mit}H_{it}$$
.

Material expenditure:

$$E_{Mit} = \tilde{P}_{Mit} M_{it}.$$

Profit maximization:

$$\max_{Q_{jt},L_{it},M_{it},H_{it}} P_{jt}Q_{jt} - \tilde{P}_{Mjt}M_{jt} - P_{L_{jt}}L_{jt}.$$

Li and Zhang

Conclusion

Setup of the Empirical Model

Denote $\omega_{it} \equiv \ln \Omega_{it}$, and assume it evolves according to an AR(1) process:

$$\omega_{jt+1} = f_0 + f_{soe}SOE_{jt} + f_{SASAC}SASAC_t + f_1\omega_{jt} + \epsilon_{jt+1}^{\omega},$$

Denote $p_{Mit} = \ln P_{Mit}$, and assume it evolves according to an AR(1) process:

$$p_{Mjt+1} = g_0 + g_{soe}SOE_{jt} + g_{SASAC}SASAC_t + g_1p_{Mjt} + \epsilon_{jt+1}^p,$$

Note: no priori assumption on whether SOEs have lower or higher input prices or productivity, compared with non-SOEs.

Two-stage estimation

Stage 1: quality-inclusive measures $(\tilde{\Omega}_{jt}, \tilde{P}_{Mjt})$, by Grieco, Li, and Zhang (2016)

▶ Use first order conditions of labor and material to recover:

$$M_{jt} = \left[\frac{\alpha_L E_{Mjt}}{\alpha_M E_{Ljt}}\right]^{\frac{1}{\gamma}} L_{jt}$$

$$\tilde{\Omega}_{jt} = \frac{1}{\alpha_L} \frac{\eta}{1+\eta} L_{jt}^{-\gamma} E_{L_{jt}} \left[\alpha_L L_{jt}^{\gamma} \left(1 + \frac{E_{M_{jt}}}{E_{L_{jt}}}\right) + \alpha_K K_{jt}^{\gamma}\right]^{1-\frac{1}{\gamma}(1+\frac{1}{\eta})}$$

Substitute into revenue equation to estimate production and demand parameters.

$$\label{eq:resolvent_equation} \textit{R}_{\textit{jt}} = \frac{\eta}{1+\eta} \left[\textit{E}_{\textit{M}_{\textit{jt}}} + \textit{E}_{\textit{L}_{\textit{jt}}} \left(1 + \frac{\alpha_{\textit{K}}}{\alpha_{\textit{L}}} \left(\frac{\textit{K}_{\textit{jt}}}{\textit{L}_{\textit{jt}}} \right)^{\gamma} \right) \right] e^{\epsilon_{\textit{jt}}}.$$

Two-stage estimation

Stage 2: quality-adjusted measures (Ω_{jt}, P_{Mjt}) , by Grieco, Li, and Zhang (2018)

First order condition of input quality implies that input quality is a monotone function of productivity (in logs):

$$h_{jt} = rac{1}{ heta} \ln rac{\sigma_{Mjt}}{1 - \sigma_{Mjt}} + \omega_{jt}$$

Use this in capability function and input price menu to recover (in logs),

$$\omega_{jt} = \tilde{\omega}_{jt} + \frac{1}{\theta} \ln(1 - \sigma_{Mjt}),
\rho_{Mjt} = \tilde{\rho}_{Mjt} - \tilde{\omega}_{jt} - \frac{1}{\theta} \ln(\sigma_{Mjt}),$$

Estimate θ , with σ_{Mjt} , $\tilde{\omega}_{jt}$, and \tilde{p}_{jt} computed from data and stage 1, using Markov assumption a la Olley and Pakes (1996).

 $\label{lower_conjecture 1} \textbf{Conjecture 1} \ (\mathsf{SOEs} \ \mathsf{v.s.} \ \mathsf{non\text{-}SOEs}) \ \mathsf{SOEs} \ \mathsf{pay} \ \mathsf{higher} \ \mathsf{input} \ \mathsf{price} \ \mathsf{and} \ \mathsf{have} \ \mathsf{lower} \\ \mathsf{productivity}, \ \mathsf{compared} \ \mathsf{with} \ \mathsf{non\text{-}SOEs}.$

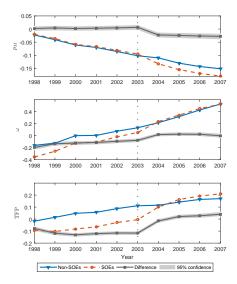
Regressions

$$Y_{jt} = \beta_0 + \beta_{soe}SOE_{jt} + \beta_z Z_{jt} + \lambda_{ind} + \lambda_{prov} + \lambda_t + \varepsilon_{jt}$$

where Y_{jt} is input prices, productivity, or TFP (all in logarithm), and Z_{jt} includes firm characteristics (e.g., age, size).

SOEs v.s. Non-SOEs

 $\label{eq:conjecture 1} \textbf{Conjecture 1} \ (\mathsf{SOEs} \ \mathsf{v.s.} \ \mathsf{non\text{-}SOEs}) \ \mathsf{SOEs} \ \mathsf{pay} \ \mathsf{higher} \ \mathsf{input} \ \mathsf{price} \ \mathsf{and} \ \mathsf{have} \ \mathsf{lower} \\ \mathsf{productivity}, \ \mathsf{compared} \ \mathsf{with} \ \mathsf{non\text{-}SOEs}.$


Regressions:

$$Y_{jt} = \beta_0 + \beta_{soe}SOE_{jt} + \beta_z Z_{jt} + \lambda_{ind} + \lambda_{prov} + \lambda_t + \varepsilon_{jt},$$

where Y_{jt} is input prices, productivity, or TFP (all in logarithm), and Z_{jt} includes firm characteristics (e.g., age, size).

Introduction

	(1)	(2)	(3)	(4)	(5)	(6)
	input price	input price	productivity	productivity	TFP	TFP
SOE	0.067*** (0.001)	0.064*** (0.001)	-0.226*** (0.004)	-0.199*** (0.003)	-0.170*** (0.002)	-0.161*** (0.002)
Age, Size R&D, K-intensity	`YES´	`YES´ YES	`YES´	`YES´ YES	`YES´	`YES´ YES
Observations	1196053	873414	1196053	873414	1196053	873414
Adjusted R ²	0.943	0.967	0.928	0.966	0.685	0.725

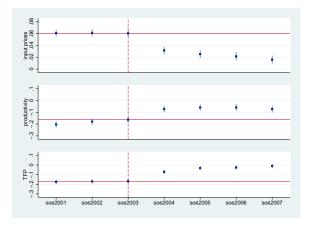
Robustness

SASAC and SOE Performance

Conjecture 2 (SASAC Effect) The establishment of SASAC reduces input prices and increases productivity of SOEs.

$$Y_{jt} = \beta_0 + \beta_{soe}SOE_{jt} + \beta_{soe*SASAC} \left(SOE_{jt} * SASAC_t\right) + \beta_z Z_{jt} + \lambda_{ind} + \lambda_{prov} + \lambda_t + \varepsilon_{jt}.$$

Conjecture 2 (SASAC Effect) The establishment of SASAC reduces input prices and increases productivity of SOEs.


Regressions:

$$Y_{jt} = \beta_0 + \beta_{soe}SOE_{jt} + \beta_{soe*SASAC} \left(SOE_{jt} * SASAC_t\right) + \beta_z Z_{jt} + \lambda_{ind} + \lambda_{prov} + \lambda_t + \varepsilon_{jt}.$$

Introduction

	(1) input price	(2) input price	(3) productivity	(4) productivity	(5) TFP	(6) TFP
SOE	0.082*** (0.001)	0.076*** (0.001)	-0.283*** (0.005)	-0.239*** (0.003)	-0.200*** (0.002)	-0.191*** (0.003)
SASAC*SOE	-0.056*** (0.001)	-0.039*** (0.001)	0.213*** (0.006)	0.126*** (0.004)	0.113*** (0.004)	0.095*** (0.004)
Age, Size R&D, K-intensity	YES	YES YES	YES	YES YES	YES	YES YES
Observations Adjusted R ²	1196053 0.943	873414 0.967	1196053 0.929	873414 0.966	1196053 0.686	873414 0.726

Dynamic Effect of SASAC and Test for Pre-trend

$$Y_{jt} = \beta_0 + \beta_{soe}SOE_{jt} + \sum_{t=2001}^{2007} \beta_{soe*t} \left(SOE_{jt} * D_t\right) + \beta_z Z_{jt} + \lambda_{ind} + \lambda_{prov} + \lambda_t + \varepsilon_{jt}.$$

Larger monitoring costs \rightarrow lower strength of monitoring \rightarrow higher level of shirking/managerial expropriation \rightarrow weaker performance.

Proxy monitoring costs as distance of an SOE to its oversight government:

- ▶ information asymmetry and monitoring difficulties, following Huang et al. (AER, 2018):
- each SOE has its own oversight government.

Potential concern: distance may contain effect of agglomeration and localization

Solution

- same affiliation system for non-SOEs;
- but, non-SOEs' affiliated government bears no responsibility for monitoring

Larger monitoring costs \rightarrow lower strength of monitoring \rightarrow higher level of shirking/managerial expropriation \rightarrow weaker performance.

Proxy monitoring costs as distance of an SOE to its oversight government:

- information asymmetry and monitoring difficulties, following Huang et al. (AER, 2018);
- each SOE has its own oversight government.

Potential concern: distance may contain effect of agglomeration and localization.

Solution

- same affiliation system for non-SOEs;
- but, non-SOEs' affiliated government bears no responsibility for monitoring.

Larger monitoring costs \rightarrow lower strength of monitoring \rightarrow higher level of shirking/managerial expropriation \rightarrow weaker performance.

Proxy monitoring costs as distance of an SOE to its oversight government:

- information asymmetry and monitoring difficulties, following Huang et al. (AER, 2018):
- each SOE has its own oversight government.

Potential concern: distance may contain effect of agglomeration and localization.

- same affiliation system for non-SOEs;

Larger monitoring costs \rightarrow lower strength of monitoring \rightarrow higher level of shirking/managerial expropriation \rightarrow weaker performance.

Proxy monitoring costs as distance of an SOE to its oversight government:

- information asymmetry and monitoring difficulties, following Huang et al. (AER, 2018):
- each SOE has its own oversight government.

Potential concern: distance may contain effect of agglomeration and localization.

Solution:

- same affiliation system for non-SOEs;
- but, non-SOEs' affiliated government bears no responsibility for monitoring.

Conjecture 3 (Monitoring Costs and SOE Performance) Higher monitoring costs reduce SOE performance, through the input prices and productivity channels.

Regressions

$$Y_{jt} = \beta_0 + \beta_{soe}SOE_{jt} + \beta_{soe*dist} (SOE_{jt} * Dist_{jt}) + \beta_{dist}Dist_{jt} + \beta_z Z_{jt} + \lambda_{ind} + \lambda_{prov} + \lambda_t + \varepsilon_{jt}.$$

Robustness

Monitoring Costs and SOE Performance

Conjecture 3 (Monitoring Costs and SOE Performance) Higher monitoring costs reduce SOE performance, through the input prices and productivity channels.

Regressions:

$$\begin{array}{lcl} Y_{jt} & = & \beta_0 + \beta_{soe}SOE_{jt} + \beta_{soe*dist}\left(SOE_{jt}*Dist_{jt}\right) + \beta_{dist}Dist_{jt} + \beta_zZ_{jt} \\ & + & \lambda_{ind} + \lambda_{prov} + \lambda_t + \varepsilon_{jt}. \end{array}$$

	(1) input price	(2) input price	(3) productivity	(4) productivity	(5) TFP	(6) TFP
SOE	0.062*** (0.002)	0.060*** (0.001)	-0.189*** (0.008)	-0.169*** (0.006)	-0.165*** (0.005)	-0.157*** (0.005)
SOE*Dist	0.002***	0.001***	-0.011*** (0.002)	-0.006*** (0.002)	0.001 (0.001)	0.002 (0.001)
Dist	YES	YES	YES	YES	YES	YES
Age, Size	YES	YES	YES	YES	YES	YES
R&D, K-intensity		YES		YES		YES
Observations Adjusted <i>R</i> ²	541117 0.946	392900 0.970	541117 0.928	392900 0.966	541117 0.669	392900 0.707

Monitoring Costs, SASAC, and Performance

Combining both the time dimension and spatial dimension, we expect:

SASAC alleviates the negative effects of monitoring costs, because:

- ► larger potential gains;
- ► SASAC may spend more monitoring effort on distant firms.

Regressions

$$Y_{jt} = \beta_0 + \beta_{soe}SOE_{jt} + \beta_{soe*dist}(SOE_{jt}*Dist_{jt}) + \beta_{soe*sasac}(SOE_{jt}*SASAC_t) + \beta_{soe*dist*sasac}(SOE_{jt}*Dist_{jt}*SASAC_t) + \beta_{dist*sasac}(Dist_{jt}*SASAC_t) + \beta_{dist}Dist_{jt} + \beta_z Z_{jt} + \lambda_{ind} + \lambda_{prov} + \lambda_t + \varepsilon_{jt}.$$

Robustness

Combining both the time dimension and spatial dimension, we expect:

SASAC alleviates the negative effects of monitoring costs, because:

- larger potential gains;
- SASAC may spend more monitoring effort on distant firms.

$$Y_{jt} = \beta_0 + \beta_{soe}SOE_{jt} + \beta_{soe*dist}(SOE_{jt}*Dist_{jt}) + \beta_{soe*asac}(SOE_{jt}*SASAC_t)$$
$$+ \beta_{soe*dist*sasac}(SOE_{jt}*Dist_{jt}*SASAC_t) + \beta_{dist*sasac}(Dist_{jt}*SASAC_t)$$
$$+ \beta_{dist}Dist_{jt} + \beta_z Z_{jt} + \lambda_{ind} + \lambda_{prov} + \lambda_t + \varepsilon_{jt}.$$

Combining both the time dimension and spatial dimension, we expect:

SASAC alleviates the negative effects of monitoring costs, because:

- larger potential gains;
- SASAC may spend more monitoring effort on distant firms.

Regressions:

$$Y_{jt} = \beta_0 + \beta_{soe}SOE_{jt} + \beta_{soe*dist}(SOE_{jt}*Dist_{jt}) + \beta_{soe*sasac}(SOE_{jt}*SASAC_t)$$

$$+ \beta_{soe*dist*sasac}(SOE_{jt}*Dist_{jt}*SASAC_t) + \beta_{dist*sasac}(Dist_{jt}*SASAC_t)$$

$$+ \beta_{dist}Dist_{jt} + \beta_z Z_{jt} + \lambda_{ind} + \lambda_{prov} + \lambda_t + \varepsilon_{jt}.$$

	(1)	(2)	(3)	(4)	(5)	(6)
	input price	input price	productivity	productivity	TFP	TFP
SOE	0.067***	0.064***	-0.222***	-0.196***	-0.175***	-0.165***
	(0.002)	(0.001)	(0.009)	(0.007)	(0.005)	(0.005)
SASAC*SOE	-0.026***	-0.019***	0.141****	0.096**	0.051***	0.035***
SOE*Dist	(0.003)	(0.002)	(0.013)	(0.010)	(0.008)	(0.008)
	0.005***	0.003***	-0.014***	-0.007***	-0.004**	-0.004**
SASAC*SOE*Dist	(0.001)	(0.000)	(0.002)	(0.002)	(0.001)	(0.002)
	-0.007***	-0.005***	0.008**	0.003	0.015***	0.015***
SASAC*Dist	(0.001)	(0.001)	(0.004)	(0.003)	(0.002)	(0.002)
	YES	YES	YES	YES	YES	YES
	YES	YES	YES	YES	YES	YES
Age, Size R&D, K-intensity	YES	YES YES	YES	YES YES	YES	YES YES
Observations	541117	392900	541117	392900	541117	392900
Adjusted R ²	0.946	0.970	0.928	0.966	0.669	0.708

Robustness

- ▶ Privatization and Internal Monitoring/Incentive
- ► Market Power/Competition
- Pre-trend
- Balanced panel
- ► World Trade Organization
- Alternative Definition of SOEs
- Firm-level Import and Export Engagement
- Firm Fixed Effects

Conclusion

- ▶ We empirically investigate how external monitoring affects SOE performance through both channels of material input prices and productivity in the context of Chinese manufacturing industries.
- ► We apply a structural method to separately estimate material input prices and productivity from observable data.
- ► Time and spatial evidence shows that ineffective external monitoring contributed to the weak SOE performance.
- Results imply that external monitoring enhancement could be an alternative of privatization to improve firm performance.