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Abstract: In this note, I derive an bias adjustment term for the Time Dummy Hedonic

price index, which is slightly smaller than the adjustment term proposed in the academic

literature. I also argue that these bias adjustment terms are inappropriate from a survey

sampling perspective when all the items sold are observed and the prices (unit values)

are measured without error.

a Division of Corporate Services, IT and Methodology, Statistics Netherlands, and Delft University of

Technology; email: jandehaan1@gmail.com.

This paper was written when the author was seconded to the Australian Bureau of Statistics (ABS). The

views expressed in this paper are those of the author and do not necessarily reflect the views of Statistics

Netherlands or the ABS.



1

1. Introduction

The standard Time Dummy Hedonic (TDH) regression model, where the exponent of

the parameter for the time dummy variables defines a quality-adjusted price index, has

been frequently applied by academic researchers. The estimated index is biased because

exponentiation is a nonlinear operation, and a bias adjustment term can be found in the

literature. In this note, I review the bias adjustment.

After describing the hedonic model, section 2 derives an alternative adjustment

term. Section 3 looks at the bias issue from a survey sampling rather than econometric

perspective and focuses on the case when all the items sold are observed and the prices

are measured without error. Section 4 concludes.

2. Bias adjustment

The TDH model explains the price of each item i, t
ip , in terms of its characteristics ikz

),...,1( Kk  and time t ( 0,..., )t T . While time is continuous, prices and quantities are

observed in discrete time periods. For some period t, the multiplicative TDH model can

be expressed as

1

exp( )exp
K

t t
i k ik

k

p z 


    
 , (1)

where exp( )t measures the effect of time and
1

exp[ ]
K

k ikk
z

 measures the combined

effect of the characteristics; the characteristics parameters k are assumed fixed across

time. For later use, both effects have been written in exponential form. Our interest lies

in exp( )t as this defines the quality-adjusted price index 0 0exp( ) /t t t
TDH i iP p p  .

Equation (1) is deterministic, which is obviously unrealistic. One option to turn

it into a stochastic model would be to add multiplicative errors t
iu with ( ) 1t

iE u  , where

(.)E is the expectation operator:1

1

exp( )exp
K

t t t
i k ik i

k

p z u 


    
 . (2)

The quality-adjusted index is now given by 0 0exp( ) ( ) / ( )t t t
TDH i iP E p E p  . Taking the

(natural) logarithm of (2) yields

1 Strictly speaking, it should be referred to as the expectation conditional on the design matrix.
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1

ln
K

t t t
i k ik i

k

p z  


   . (3)

The expected value of the error terms ln( )t t
i iu  in (3) can be approximated as

follows. The second-order Taylor series expansion of ln( )t
iu at 1 is

21
ln 1 1

2
t t t
i i iu u u         , (4)

and taking expectations of (4) gives

21
( ) (ln ) 1 ( 1) var( ) / 2

2
t t t t t
i i i i iE E u E u E u u             , (5)

where 2var( ) [( 1) ]t t
i iu E u  denotes the variance of t

iu . I will return to the implications

of the non-zero expected value of the errors t
i below.

By pooling the data of all the time periods 0,...,T , the estimating equation for

the TDH model becomes

1 1

ln
T K

t t t t
i i k ik i

t k

p D z   
 

     , (6)

where the time dummy variable t
iD has the value 1 if the price observation pertains to

period t and 0 otherwise. As usual, an intercept term has been included in (6), and the

dummy variable for period 0 has been left out to identify the model. I assume that (6) is

estimated by Ordinary Least Squares (OLS) regression, yielding coefficients ̂ , ˆt and

k̂ . The standard estimator of exp( )t is given by

0
0

ˆˆˆ exp( )
ˆ

t
t t i

TDH
i

p
P

p
  , (7)

where 0

1
ˆˆˆ exp( )exp( )

K

i k ikk
p z 


  and

1
ˆ ˆˆˆ exp( )exp( )exp( )

Kt t
i k ikk

p z  


  define the

predicted prices.

For two reasons, 0ˆ t
TDHP is not an unbiased estimator of exp( )t . Firstly, because

( ) 0t
iE   , the OLS parameter estimators, including ˆt , are generally biased. Secondly,

because taking the antilogarithm is a nonlinear operation, ˆexp[ ( )]tE  will differ from
ˆ[exp( )]tE  . To obtain an approximation for the expected value of 0ˆ t

TDHP , I will proceed

as follows.

The difference between t̂ and ˆ( )tE  is likely to be small. The second-order

Taylor series expansion of ˆ ˆexp[ ( )]t tE  at 0 is
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21ˆ ˆ ˆ ˆ ˆ ˆexp ( ) 1 ( ) ( )
2

t t t t t tE E E                    . (8)

Taking expectations of (8) yields

21ˆ ˆ ˆ ˆ ˆ ˆexp ( ) 1 ( ) ( )
2

t t t t t tE E E E E E                         
 . (9)

Thus, the expected value of 0ˆ t
TDHP can be approximated by

0 ˆ ˆ ˆˆ( ) exp( ) exp ( ) 1 var( ) / 2t t t t
TDHE P E E              , (10)

with 2ˆ ˆ ˆvar( ) [( ( )) ]t t tE E    . Writing ˆ( )tE  as ˆ[ ( ) ]t t tE    , where ˆ( )t tE  
is the bias of ˆt , gives

0 ˆ ˆˆ( ) exp( ) 1 var( ) / 2 exp ( )t t t t t
TDHE P E           . (11)

Equation (11) provides an approximate decomposition of the expected value of

the standard TDH index 0ˆ t
TDHP into the “true” index exp( )t and two bias components.

The first bias component, ˆ1 var( ) / 2t , is strictly greater than 1 because ˆvar( ) 0t  .

This component decreases as the sample size increases; it is a form of “small-sample

bias”. Whether the second bias component, ˆexp[ ( ) ]t tE   , is greater or smaller than 1

depends on the distribution of the (multiplicative) errors t
iu in (3).

An assumption I am happy to make is that the variance of the errors t
iu in (3) is

the same for all items i and constant across all periods t, i.e. 2var( )t
iu  . In this case

we have 2( ) / 2t
iE   for the errors in the estimating equation (6). Since 2 / 2 is a

“constant” term, estimating (6) by OLS regression will produce approximately unbiased

parameter estimates – except of course for the intercept  , but that is not relevant for

our purpose – and the second bias component in (11) will be approximately equal to 1. I

therefore propose the following estimator of 0 exp( )t t
TDHP  :

0
0

ˆ
ˆ1 var( ) / 2

t
t TDH

TDH t

P
P



  

 . (12)

The derivation of (12) was based on the stochastic model specification (3). The

same result is found if we first took the logarithm of (1) and then added (additive) errors
t
i with ( ) 0t

iE   , in which case 0 0exp( ) exp[ (ln )] / exp[ (ln )]t t t
TDH i iP E p E p  . This is

actually the usual approach. Estimating (6) by OLS now provides unbiased estimators
ˆt , albeit not necessarily with minimal variance, and so the second bias component of
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(11) vanishes. We cannot check which assumption regarding the errors in equations (3)

and (6) is “best”, but I prefer the usual assumption ( ) 0t
iE   .

The proposed adjustment differs from the adjustment in the academic literature.

Drawing on Goldberger (1968), Kennedy (1981) proposed the following estimator of
0 exp( )t t

TDHP  :

0
0

ˆ ˆexp( )ˆ ˆexp var( ) / 2
ˆ ˆexp var( ) / 2 exp var( ) / 2

tt
t t t TDH

TDH t t

P
P


 

 
         

   


. (13)

Given that ˆ ˆ1 var( ) / 2 exp[var( ) / 2]t t   , my bias adjustment turns out to be smaller

than Kennedy’s (1981) proposal, hence 0 0t t
TDH TDHP P

 .

Note that the second-order Taylor series approximation of ˆexp[var( ) / 2)]t is

equal to 2ˆ ˆ1 var( ) / 2 [var( )] / 4t t   . Since the quadratic term will be extremely small,

the first-order approximation ˆ ˆexp[var( ) / 2)] 1 var( ) / 2t t  most likely holds true so

that the two bias adjustments are approximately equal and should in practice produce

very similar results. Anyway, the bias problem is of little practical importance: there is

abundant empirical evidence indicating that, unless the sample is extraordinary small,

we can ignore the bias of the standard estimator 0ˆ t
TDHP .

Table 1: Results from a pooled OLS TDH regression for TVs
TD coefficient Standard error TDH index exp(variance/2) 1+ variance/2

Feb 2015 -0.0148648 0.0319951 0.9852451 1.0005120 1.0005118

Mar 2015 -0.0241579 0.0317302 0.9761316 1.0005035 1.0005034

Apr 2015 0.0473072 0.0305772 1.0484440 1.0004676 1.0004675

May 2015 0.0519111 0.0295949 1.0532821 1.0004380 1.0004379

Jun 2015 0.0612632 0.0294647 1.0631788 1.0004342 1.0004341

Jul 2015 0.0338776 0.0284843 1.0344580 1.0004058 1.0004057

Aug 2015 0.0355484 0.0280608 1.0361878 1.0003938 1.0003937

Sep 2015 0.0227978 0.0280583 1.0230597 1.0003937 1.0003936

Oct 2015 0.0028196 0.0279725 1.0028236 1.0003913 1.0003912

Nov 2015 -0.0335770 0.0276054 0.9669805 1.0003811 1.0003810

Dec 2015 -0.0879583 0.0274085 0.9157991 1.0003757 1.0003756

Jan 2016 -0.1874503 0.0275679 0.8290703 1.0003801 1.0003800

Feb 2016 -0.1500560 0.0278548 0.8606598 1.0003880 1.0003880

Mar 2016 -0.1390535 0.0287470 0.8701815 1.0004133 1.0004132

Apr 2016 -0.1485559 0.0282679 0.8619518 1.0003996 1.0003995

May 2016 -0.1026757 0.0281376 0.9024196 1.0003959 1.0003959

Jun 2016 -0.1152131 0.0402686 0.8911762 1.0008111 1.0008108
Note: “variance” is estimated by the squared standard error of the TD coefficient; # observations is 2,447;
R squared is 0.936. The parameter estimates for the characteristics can be found in the Appendix.
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To illustrate these points, I ran a pooled (OLS) TDH regression on scanner data

for TVs from a Dutch retail chain, covering the period January 2015 to June 2016 (with

January 2015 as the base period). Table 1 contains the relevant regression results, i.e.

the estimated time dummy parameters and the standard errors as well as the unadjusted

TDH index and the bias adjustments. As expected, the two bias adjustments are tiny and

very similar, the adjustment I proposed being marginally smaller than the adjustment

proposed by Kennedy (1981).2

3. A survey sampling perspective

I assume that (3) with ( ) 0t
iE   is the appropriate hedonic model. We then have

0 0

0

exp (ln )
exp( ) exp (ln ) (ln )

exp (ln )

t
it t t

TDH i i

i

E p
P E p E p

E p


          
. (14)

In econometrics, modelling is viewed as a data generating process; prices in the hedonic

model (3) are treated as random variables. It is typically assumed that the model applies

to an almost infinite population, or “superpopulation”, and that the observed products

pertain to a sample drawn from this (super)population. Sampling introduces additional

randomness. The distribution of the error terms is thought to capture both sources of

stochastics.

In this section, I look at the bias issue from a survey sampling or “statistical”
perspective. I assume that i) prices are measured without error, and ii) the population of

items sold within a product category is finite and observed in its entirety. Initially, I also

assume that iii) there are no new and disappearing products; the finite population U is

fixed over time. The finite population counterpart to the “superpopulation-based” price
index (14) is

1
1

0
1 0

0 0

exp ln / ( )

exp ln / ( )

t t N
i ti N

i Ut i U i

i U iN
i i

i U i U

p N p
p

P
p

p N p

 



 

 
           
  

 


 
, (15)

2 I have to admit that I find Kennedy’s (1981) derivation and the related literature on the bias adjustment,
including e.g. van Garderen and Sha (2002) and van Dalen and Bode (2004), difficult to follow. I also got

confused because both the CPI manual (ILO et al., 2004) and Triplett (2006) (erroneously) mention that

half the variance of ˆ t should be added to ˆ t before exponentiation when using Kennedy’s adjustment. I

thank Kevin Fox for drawing my attention to this error in the literature.
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where N denotes the size of U, i.e. the number of products sold. From a survey sampling

perspective, there are no stochastics involved, and the price index defined by (15) will

be completely deterministic.

Let us now relax assumption iii) to allow for new and disappearing products. 0U

and tU , with sizes 0N and tN , denote the populations of products sold in periods 0 and

t. We have 0 0 0( )t t
M DU U U  , where 0t

MU is the sub-population of matched products sold

in both period 0 and period t, and 0( )t
DU is the sub-population of disappearing products

sold in period 0 but not in period t; similarly, 0 (0)t t t
M NU U U  , where (0)t

NU is the sub-

population of new products sold in period t but not in period 0.

All the products sold in periods 0 and t should be considered when making price

and quantity comparisons. Thus, the dynamic finite population counterpart to (15) must

be defined on the union 0 0t tU U U  with size 0tN (see also de Haan, 2005), that is

0

0
0

00

0

1

1

0
1 0

0

( )

( )

t

t
t

tt

t

t N
i t N

t i U i

i U iN
i

i U

p
p

P
p

p







 
   

 





. (16)

Obviously, the period t prices for 0( )t
Di U and period 0 prices for (0)t

Ni U in (16) are

unobservable, or “missing”, and they have to be imputed by ˆ t
ip and 0ˆ ip . By writing 0tU

as 0( )t t
DU U in the numerator of the first expression of (16) and as 0 (0)t

NU U in the

denominator, the finite population index becomes

00

0( )

0 (0)

11

0
0 0

ˆ

ˆ

tt

tt
D

t
N

tt NN ii
i Ut i U

i i
i U i U

pp

P
p p



 

  
     
     


 

. (17)

I now make the additional assumption that iv) the populations 0U and tU , hence

the union 0tU and its size 0tN , are non-stochastic. This assumption seems appropriate

from a survey sampling perspective. In this case, the first component in (17) is also non-

stochastic because the observed prices do not result from a stochastic process and are

measured without error (assumption i)). This is different for the second component in

(17) since modelling is required to predict the “missing” prices.

The estimating equation (6) is now viewed as a purely descriptive (rather than

stochastic) model. The error terms, or actually the regression residuals, merely reflect

that the model cannot perfectly describe the data. I assume that (6) is estimated by OLS
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regression on the pooled data of all periods 0,...,t T , as before, and that the predicted

values )ˆexp()ˆexp(ˆ
1

0  


K

k ikki zp  and )ˆexp()ˆexp()ˆexp(ˆ
1 


K

k ikk
tt

i zp  will serve

as imputed prices in (18). A number of points are worth noting.

First, the standard TDH index estimator 0ˆ t
TDHP , given by equation (3), is equal to

(17). This is due to the OLS orthogonality property that the regression residuals sum to

zero in every time period; with 0

0 0ˆ(ln ln ) 0i ii U
p p


  and ˆ(ln ln ) 0t

t t
i ii U

p p


  , we

have 0 0

0 0ˆi ii U i U
p p

 
  and ˆt t

t t
i ii U i U

p p
 

  , so that equation (17) simplifies to
0

0

0 0 1/ 0ˆ ˆˆ ˆ( / ) exp( )
t

t

t t N t t
i i TDHi U

P p p P


   .

Second, under assumptions i), ii) and iv), only the second component of equation

(17) has uncertainty. This implies that the bias adjustments for 0ˆ t
TDHP discussed in section

2, which assume that the first component is stochastic, are inappropriate. Importantly, if

there are no new and disappearing items, 0ˆ t
TDHP is non-stochastic from a survey sampling

perspective. From an econometrics perspective, 0ˆ t
TDHP remains stochastic and adjusting

for bias would still be required.

Third, the imputed prices are out-of-sample predictions, but it will be difficult to

assess their accuracy. It does suggest that a parsimonious regression model, with only

the most important price-determining characteristics included, is preferred over a model

with many independent variables. The latter model could suffer from overfitting, which

makes out-of-sample prediction problematic.

Fourth, because some prices are “missing”, the prices data set is incomplete, and
we can interpret the observed data set as a sample from the true underlying data set that

includes the unobservable prices. Also, the imputations are model-dependent. So, even

from a survey sampling perspective, the second component of (17) should be treated as

stochastic. However, it will be difficult to measure the impact on the accuracy of 0ˆ t
TDHP

in terms of its mean square error.

Fifth, assumption i) is crucial. The price for a homogeneous product is measured

without error only if it is calculated as the unit value across the observation period, i.e.

as the value divided by the quantity sold.3 But if prices are measured at a single point in

time during the observation periods, or as averages of a few price quotations, which is

what statistical agencies have traditionally been doing, they do have measurement error

(Balk, 2004). With sampling in time, prices must be treated as stochastic variables, and

the proposed bias adjustment may or may not be useful.

3 For details, see ILO et al. (2004). Diewert, Fox and de Haan (2016) discuss the bias that arises when the

frequency of calculating unit values does not align with the publication frequency.
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4. Conclusion

In this note, I proposed an alternative bias adjustment term for the TDH index, which is

smaller than the adjustment term proposed in the literature. I argued that they will lead

to similar results in practice and also argued that if all the products sold are observed

and the prices (unit values) are measured without error, like in most scanner data sets,

then the econometrics-based bias adjustments are inappropriate from a survey sampling

perspective. Anyway, the bias problem is of little practical importance; all the available

empirical evidence, including the evidence presented in section 2, suggests that it is safe

to ignore the bias.
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Appendix: Regression results

Table A.1 shows the OLS parameter estimates and standard errors for the characteristics

included in the empirical regression model for TVs discussed in section 2.

Table A.1: Regression results, excluding time dummies
Variable Coefficient Standard error t-statistic
Intercept 6.2264181 0.0351743 177.02

Brand
‘Low quality’ -0.1332732 0.0232081 -5.74
Philips -0.0561047 0.0184054 -3.05
Panasonic 0.0647752 0.0279184 2.32
Samsung 0.0650328 0.0202745 3.21
Sony 0.1759336 0.0172706 10.19
Processor
Single core -0.0399569 0.0160967 -2.48
Quad core 0.0806517 0.0174920 4.61
Hexa/Octa core 0.2648286 0.0276823 9.57
Screen type
OLED 0.7057137 0.0339220 20.80
Screen size
<29 -0.2607026 0.0191251 -13.63
40 0.2750528 0.0199359 13.80
42-47 0.4343349 0.0213964 20.30
48-50 0.5978358 0.0201487 29.67
55 0.8588598 0.0224967 38.18
>55 1.3674641 0.0292151 46.81
Screen curvature
Not curved -0.2350841 0.0154377 -15.23
Resolution
‘Low’ 0.0912865 0.0216240 4.22
3840x2160 0.3778351 0.0148433 25.45
Energy class
A+ 0.0163054 0.0121391 1.34
A++ -0.0152320 0.0229782 -0.66
B -0.0288773 0.0163831 -1.76
Dlna
No 0.0659904 0.0142359 4.64
3D
No -0.1368229 0.0118787 -11.52
Internet
No -0.1692378 0.0236574 -7.15
Video on Demand
No -0.0274138 0.0158212 -1.73
Satellite receiver
No -0.0670860 0.0141992 -4.72
Note: all the coefficients except Energy class and Video on Demand differ
significantly from 0 at the 5%-level.


