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1. INTRODUCTION
Double-diffusive convection, driven by combined thermal and solutal gradients, occurs in many

natural and industrial processes, such as oceanography, geophysics, and chemical engineering. When
the fluid is viscoelastic, elastic stresses interact with viscous effects, altering the onset and patterns of
convection.

While double-diffusive convection in Newtonian fluids has been widely studied, the effects of
viscoelasticity in multi-layer systems remain less explored. This study investigates a two-layer sys-
tem saturated with a viscoelastic fluid, modeled using a linear viscoelastic constitutive relation that
incorporates stress relaxation and strain retardation times.

The governing equations are nondimensionalized, yielding key parameters including the Biot num-
ber, layer thickness ratio, strain retardation time, stress relaxation time, solutal Rayleigh number, and
Sherwood number. Linear stability analysis, solved numerically via the spectral method, is used to
examine the onset of convection. This study provides insights into how these parameters influence
the onset and characteristics of double-diffusive convection in layered viscoelastic systems, relevant
to both theoretical and practical applications.

2. APPROACH
The system under consideration consists of two horizontal layers, one saturated with a viscoelastic

fluid and the other representing a porous layer. The governing equations for momentum, heat, and
mass transfer are formulated for a linear viscoelastic fluid, incorporating both stress relaxation and
strain retardation effects.

The equations are nondimensionalized using characteristic scales for length, time, temperature,
and solute concentration, resulting in key nondimensional parameters such as the Biot number (Bi),
thickness ratio, solutal Rayleigh number (RaS), Sherwood number (Sh), stress relaxation time (λ), and
strain retardation time (ε).

Linear stability analysis is applied by perturbing the quiescent conduction solution and linearizing
the governing equations. The resulting eigenvalue problem is discretized and solved using the Cheby-
shev Tau spectral method, which provides high accuracy and computational efficiency for determining
the critical Rayleigh numbers and corresponding instability modes.

3. RESULTS



• Thickness ratio effects: Greater thickness ratio increases the Rayleigh stability. This implies that
increasing the thickness of the fluid layer or decreasing the thickness of the porous layer tends
to stabilize the system, thereby delaying the onset of convection.

• Solutal effects: Greater solutal Rayleigh numbers RaS delay instability onset. Variation in RaS
leads to changes in the modal structure of the system. Depending on RaS, the convection may
exhibit either a single-mode or a double-mode instability.

• Surface heat and mass transfer effects: Greater Biot numbers increase the convective stability.
Besides, the system reaches a saturation of instability when Bi = 1. Greater Sherwood number
increase stabilities as well. However, the system is still not saturated in terms of instability when
Sh = 1.

• Viscoelastic effects: Great stress ralaxation time λ and strain retardation time ε palys different
role in convective instability. The former accelerates the onset of convection while the latter
delays it.
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Figure 1. Neutral curves of Rayleigh flow for a set
of stress retardation times λ.
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Figure 2. Neutral curves of Rayleigh flow for a set
of stress retardation times ε.

4. CONCLUSIONS
This study examined double-diffusive convection in a two-layer viscoelastic system. Results show

that increasing the layer thickness ratio, solutal Rayleigh number, Biot number, and Sherwood num-
ber enhances convective stability, while viscoelastic parameters have opposite effects. Variations in
solutal Rayleigh number can lead to a transition between different dominant instability modes. These
findings highlight the combined influence of geometric, thermal, solutal, and viscoelastic effects on
the onset and nature of convection in layered fluid systems.

REFERENCES

[1] Lin, C. & Payne, L. E. (2007) Structural stability for the Brinkman equations of flow in double-diffusive
convection. Journal of Mathematical Analysis and Applications, 325(2), 1479–1490.

[2] Lu, C., Zhang, M., He, X., et al. (2023) Effects of phase boundary and shear on diffusive instability.
Journal of Fluid Mechanics, 963, A38.

[3] Shankar, B. M. & Shivakumara, I. S. (2024) Stability of triple-diffusive convection in a vertical porous
layer. Journal of Fluid Mechanics, 989, A8.

[4] Barman, D. & Barman, P. (2025) Thermosolutal stability analysis of a Brinkman porous layer under local
thermal non-equilibrium in the presence of viscous dissipation. Physics of Fluids, 37(10).


