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1. INTRODUCTION

Gravity currents (or density currents) are horizontal intrusions of a denser fluid (p.) into an
ambient fluid of lower density (pp). They evolve until the density difference becomes negligible, with
significant mixing occurring in the inertial regime as coherent structures break down into small-scale
turbulence [1]. Comprehensive reviews can be found in [2,3]. Numerical simulations provide highly
detailed information about the flow field, but they are computationally very expensive. In many
applications, only selective key information is required. For example, in the case of bushfires, key
statistics are the front location and mean concentration in the head, which are critical for assessing
smoke dispersion into the atmosphere. In this study, we employ artificial intelligence (Al) tools to
predict key features of gravity current evolution.

Specifically, neural ordinary differential equations (Neural ODEs) [4], trained on a selected subset
of high-fidelity three-dimensional direct numerical simulation (DNS) data, are used to learn and
predict gravity current dynamics. Figure 1(a) shows the computational setup. Four cases with
stratification strengths S = (p, —pg)/(p: — pg) = 0,0.2,0.5, and 0.8 (where p,, p; and p; denote
the densities of the bottom, top boundary and heavy fluid, respectively) are considered. Three cases
(§ =0,0.5,0.8) are used for training, and the intermediate case (S = 0.2) and an extrapolative case
beyond the training range (S = 0.9) are reserved for validation. The model takes five inputs: the
stratification strength (§) as a conditional input, and four state variables—the front location (x 7), front
velocity (u r), kinetic energy (Ey), and available potential energy (E,). Time integration is performed
using a fourth-order Runge—Kutta (RK4) scheme, with a mean squared error (MSE) loss function to
quantify the discrepancy between predicted and reference DNS results. Normalisation and appropriate
weighting are applied to the different state variables to ensure balanced training.

2. RESULTS

Figure 2 shows the evolution of the gravity current with solid red vertical line representing the
front location of the current and will serve as a training input. Figure 2 shows that the training results
for § =0,0.5, and 0.8 agree well with the DNS results, although the model slightly underpredicts the
slumping phase and the peak of Ej. To assess potential overfitting, the training and testing losses are
plotted in Figure 1(c). The prediction for the unseen cases S = 0.2 and 0.9, highlighted by the red
rectangle, also shows good agreement.

3. CONCLUSION

Neural ODEs demonstrate potential to capture the dynamics of gravity current flows, even when
trained on a sufficiently rich data set containing key physical variables. These results highlight the
promise of extending the neural ODEs framework to larger and diverse training data set (such as
varying initial aspect ratio and Reynolds number), which could further improve the generalisation and
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Figure 1. (a) Sketch of the azimuthal-averaged density contour of the three-dimensional simulation at ¢t = 0,
(b) azimuthal-averaged density contour of the current and (¢) evolution of the training and testing loss.
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Figure 2. Comparison between the DNS results (solid lines) and prediction by neural ODEs (dashed lines).
The second column (S = 0.2) and last column (S = 0.9) are not trained by the network/algorithm (validation
data).

predictive capability of the model. Future work will focus on the gravity current head, with particular
attention to its size and mean concentration, as this highly turbulent region plays a dominant role in
mixing and entrainment.
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