13" Australasian Natural Convection Workshop (13ANCW)
Canberra, Australia, 1% and 2" December 2025

Trapped Wave Drag from a 2D Obstacle in a Stratified Flow:
Theory & Experiments

Thomas Valentini'" , Joseph Klewicki', and Jimmy Philip’
'University of Melbourne, Parkville, Victoria, 3010, Australia

*valentini.t@unimelb.edu.au

1. INTRODUCTION (a) w/U.
When a stratified fluid flow encounters an 0.05 0 0.05
obstacle, the resulting internal waves in the fluid give o) S— : ——

rise to many phenomena, including trapped waves,
which propagate downstream from the obstacle and
impart a drag on the flow. Orographic drag of this
kind is an important parameter for weather forecast

models, which parameterise the drag of unresolved % TS B B B B 3
hills and mountains. Here, it is demonstrated that
many, widely varied trapped wave models exhibit B B B B

similar behaviour, in terms of flow-fields and drag,
governed by a simple set of non-dimensional

numbers. These different models allow for 0 5 10
connections to be made between widely different z/L

fluid flows, from atmospheric flows over mountain (b)

ranges, to tow-tank experiments in the laboratory. 3.5

2. DISCUSSION
Stratified flows over obstacles can be
approximated with the linear Taylor-Goldstein
equation [1][2]
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where z the vertical coordinate, w is the vertical
velocity, k is the horizontal wavenumber, and [ is the 0 1 3 3
Scorer parameter [3], which is a function of the 8/x

background flow velocity U and the background
buoyancy frequency N. When [? decreases with
height, waves can become “trapped” below a certain
altitude, and can propagate downstream. A
straightforward example of an analytical trapped
wave field can be derived for a piecewise constant
Scorer parameter, of the form:

12 = {13, z/H<1 )

0, z/H > 1,
with [, and H being the magnitude and height scale of the Scorer parameter respectively. Two key
non-dimensional numbers here are f = [ H, and y = H/L, where L is the obstacle length scale. An
analytical vertical velocity field for this [? distribution, with a 2D Gaussian obstacle of chord-length
L, is plotted in Figure 1(a), where x is the horizontal coordinate. The plot demonstrates the limited
vertical extent and distinctive “cellular” wave field that are typical of trapped waves. It will be shown
that the properties of this analytical solution can be generalised to qualitatively describe the behaviour

Figure 1(a) An analytical trapped wave
velocity field for a Gaussian obstacle, and
(b) Analytical wave drag for a Gaussian
obstacle and different § values.
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of trapped wave solutions for a variety of different

4 [ ] .. . .
4.0 Tow tank data T Scorer parameters and boundary conditions, including

----- Castro et al (1990)

35 ] exponential and linearly decreasing Scorer parameters,
which more closely approximate realistic distributions
3.0 1 ¢ in the Earth’s atmosphere. The analytical solution, can

also be used to obtain an equation for drag, using the

2 method originated in Texiera eta al (2015) [4]. The
2.0 1 analytical wave drag D, normalised by the unstratified
15 - turbulent form drag D, is plotted in Figure 1(b), showing

some key properties of stratified wave drag, namely the
104 non-monotonic increase in drag with 8, and the periodic
05 dips at regular intervals of 8 /m.

Drag variations, similar to those seen in Figure 1(b)
0.0 . . . . . can be observed experimentally with a stratified tow-
05 1.0 15 20 25 3.0 tank experiment. A linear stratification profile is
. ) pin generated in a long tank, using water with varying salt
Figure 2 Experimental tow tanl.< wave concentrations, resulting in a fluid with a constant Scorer
drag‘rr.leasurements, plotted against parameter, similar to the piecewise constant profile (2).
empirical curve from [5] A pseudo 2D mountain shaped obstacle is then pulled
through the tow-tank at a constant speed, and drag is measured with a load cell. Stratified drag is
normalised by unstratified drag to account any Reynolds number effects. An experiment of this form
was conducted in Castro, Snyder & Baines (1990) [5], producing an empirical curve, shown as the
grey dotted line in Figure 2. The grey areas are parameter spaces where the authors found the drag
fluctuating instead of reaching a steady state. A similar experiment has now been performed with a
similar obstacle, using a new tow-tank facility at the University of Melbourne. The results obtained
are shown as the datapoints in Figure 2, conforming closely to the published results within the range
of values tested. What we see in both cases, is drag peaking at half-integer values, and minimised at
integer values of the parameter f/m, as well as a clear, but non-monotonic increase in the drag as
[ /m increases. The shape and features of the analytical solution do not perfectly match the analytical
model, but this is to be expected, since the boundary conditions in a tow-tank experiment are
complicated, and do not match the simple boundary conditions of the linear analytical model. The
analytical model also does not account for the reduction in form drag due to the stratification.
Nevertheless, the favourable comparison between the experiments and the theory directly point to
trapped waves as the source of this non-monotonic drag. In order to further test the relationship
between analytical drag equation and real world drag, the experiment will be repeated using obstacles
with different L values and compared to analytical model predictions.

3. CONCLUSIONS

Different analytical trapped wave solutions share key traits, which can be generalised across
different Scorer parameter distributions, from a simple linear stratification to more realistic
distributions. Several of these traits can be demonstrated in the laboratory using a stratified tow-tank
experiment.
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