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1. INTRODUCTION

Vertical natural convection (VNC) arises in many engineering applications, such as solar chim-
neys, electronics cooling, and building ventilation. Numerical simulations conducted to study this
flow are typically two-dimensional (2D) due to the reduced computational cost. However, 2D VNC
flows vastly differ from turbulent three-dimensional (3D) simulations. In 2D periodic flow such as
the setup shown in fig. 1(a), it is found that the flow exhibits chaotic oscillations, including flow
reversals and relaminarisation. Figure 1(b)—(c) shows the switching periods over the course of a
long simulation time and example snapshots of the temperature field. The underlying physics of this
challenging behaviour can be effectively studied using modal analysis, with proper orthogonal de-
composition (POD) being a traditional approach. Recent advances in machine learning have shown
that autoencoders can be an effective tool for producing reduced-order models [1]. The present study
aims to validate the use of B-variational autoencoders (3-VAEs) for natural convection flows and to
uncover the mechanisms behind the differing behaviours observed in 2D and 3D simulations.
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Figure 1. (a) Flow domain showing a vertical 2D periodic channel, (b) wall shear stress on both walls verses
nondimensional time, and (c) instantaneous temperature contours at selected timesteps throughout the simula-
tion.

Autoencoders (AEs) are a type of neural network that reduce data dimensionality sequentially
through an encoder and a decoder. In between, compression is achieved through a bottleneck layer
with a latent space vector typically of dramatically reduced dimension to the high dimensional input
data. Variational autoencoders (VAEs) extend this framework by representing the latent space as a
probabilistic distribution, typically parameterised by a mean (u) and variance (G). The correspond-
ing loss function therefore includes an additional term to assess how well the latent distribution is
approximated. Adjusting the weight () of this term has been shown to improve orthogonality while
maintaining reconstruction accuracy (-VAE approach) [2].



For our study, we employed a B-VAE on a 2D DNS dataset (Rayleigh number 1 x 10°, Prandtl
number 0.71), using a four layer encoder to compress the data into 16 latent-space variables. The
input dataset comprised 5000 snapshots of normalised streamwise () and crossflow (v) velocities
along with temperature (7') fields, interpolated onto a spatial grid of (n.,n,) = (128,64), sampled
at Ar of 0.1. The first 80% of the data (i.e., up to 400 time units) was used for training, with the
remainder reserved for validation. The model was trained using the Adam optimiser for 1200 epochs,
until both training and validation losses reached stability.

2. RESULTS

Figure 2(a) shows the cumulative energy captured as the number of modes increases, where for
B-VAE, the energy is computed as the L, norm of the reconstruction relative to the input data. The
reconstruction accuracy for a given number of modes can thus be assessed by the proportion of energy
captured. We observe that the B-VAE captures high energy features more rapidly than POD, particu-
larly where the POD curve slows in capturing energy for the higher order modes. This indicates that
the B-VAE architecture effectively captures the dominant reduced-order features of the flow with a
compact nonlinear representation.

The other two sub-figures show the reconstruction of u velocity fields, at a time (b) from the train-
ing set and (c) from the validation set (unseen during training). In (b), both methods produce accu-
rate reconstructions, confirming that B-VAEs can effectively capture complex flows and can identify
high-energy structures. For future states in (c), prediction is particularly challenging as it involves
forecasting the evolution of the simulation. Nevertheless, the B-VAE generally captures the overall
flow trends, indicating that the trained model has successfully learned the complex dynamics.
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Figure 2. (a) Cumulative energy versus number of modes. Reconstruction of u velocity from (b) the training
set (POD reconstructed with 16 modes), at ¢t = 217, and (c) from the validation set, at t = 410. True represents
the input field (2D DNS).

3. CONCLUSION

The present study demonstrates the modal analysis of VNC using a B-VAE. Further work will
focus on enhancing the B-VAE architecture, investigating sensitivity to the input data, and ultimately
analysing spanwise effects by comparing the latent-space representations of 2D and 3D flows.
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