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Fibers have been closely related to the human civilization ever since the origin of mankind. 

Naturally occurring fibers, such as cotton, flax, and wool have been utilized by mankind as early 

as in the Neolithic period. In 200 BC, China was able to transport high-quality silk products to the 

Western through the Silk Road. Nowadays, China produces 70% of the world's chemical fibers. 

Fibers are much more than used in textile field, they are also showing their vast potential as smart 

and highly functional materials, being applied in health care, environmental protection, aerospace, 

and military. With the integration of physics, chemistry, biology, medical science, and information 

technology, fiber science has fully grown into a multidisciplinary research frontier, targeting to 

develop high-performance, intelligent, and sustainable materials. At the same time, fiber 

technology has become an essential part in affecting and guiding the directions of modern industry.  

In this report, we will start with a brief review on the fiber history and fiber related chemistry, then 

introduce stories about how we use organic-inorganic hybridization to solve the key problems and 

technical bottlenecks in the development of fiber materials with multi-functionalities and 

intelligence. Specifically, we will introduce how we integrate AIEgens as a “built-in” sensor into 

fibers for probing the nano-hybridization mechanism of the hybrid fibers. Further, how we 

accurately regulate multi-physics fields (i.e., light, heat, force, magnetism) via the high-throughput 

screening to construct the hybridized fibers with multi-functions will also be discussed. We will 

end up with a summary and perspective on the next generation of fiber materials. 
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Plastics and elastomers are two important synthetic polymers widely applied in our daily life due 

to their excellent properties, which are attributed to their various structures mainly controlled by 

the employed catalysts.  Herein, we report the synthesis of new polymer materials from the 

copolymerization of ethylene, dienes and styrene etc commonly used monomers using newly 

designed organolanthanide catalysts by means of the synergistic effects, the mechanism 

compromise, switching of selectivity, and the polar monomer-activation etc strategies. These allow 

us to obtain recyclable thermoplastics elastomers, upcycling HDPE, topological rubber with high 

green-strength, the “plastic” rubber materials unable to access using conventional methods, which 

also paves a new avenue for our human society to diminish the effects of “white” and “black” 

pollution of plastics and rubbers. 
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Compressive Chiral Hydrogels from Helical Dendronized Polymers 

 

Abstract:  

Helical polymer hydrogels combine three-dimensional network from the hydrogels with the 

characteristic chirality feature from the helical polymers in one matter, which not only furnishes a 

platform for understanding relationship between polymer structures and their helicities, but also 

provides perspectives for their intriguing applications in materials aspects. Here we report on 

fabrication of chiral hydrogels from thermoresponsive dendronized phenylacetylene copolymers 

(PPAs) carrying three-fold dendritic oligoethylene glycols (OEGs) through crosslinking by 

acylhydrazones. Three different temperatures, i.e. below cloud point temperatures (Tcps) of the 

copolymers, above the Tcps, and under freezing condition, were utilized for the crosslinking, 

affording thermoresponsive hydrogels with different morphologies. Crosslinking at freezing 

temperature synergistically through ice templating afforded hydrogels with highly porous lamellar 

structures, which exhibited remarkable compressible properties as human articular cartilage with 

excellent fatigue resistance. Amphiphilicity of the dendronized copolymers played a pivotal role 

in modulating the network formation during the gelation, as well as morphology and mechanical 

performance of the resulting hydrogels. Through crosslinking, these dendronized copolymers 

featured with typical dynamic helical conformations were transformed into hydrogels with 

stabilized helicities due to the restrained chain mobilities within the three-dimensional networks. 
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The study of structure-property relationship is the core subject of polymer science. 

However, due to molecular weight dispersity of and complex hierarchical structure, the study of 

polymer structure-property relationship relies on the average outputs of polymer chains with 

different sizes, and often yields inaccurate results1,2. The discrete polymer is recognized as the 

ideal model for structure-property relationship study. Herein, we report an iterative exponential 

growth strategy for efficient synthesis of discrete oligo- and polyesters, employing an optimized 

protective group pair, namely, TBDPS ether and t-butyl ester. The versatility of the strategy is 

demonstrated by facile preparation of several structurally diverse discrete oligo- and polyesters 

under mild, safe, and scalable reaction conditions, with the number of repeat units up to 256. 

Moreover, the contributions of the terminal protective groups on the melting and crystallization 

behaviors of discrete oligo- and poly(ε-caprolactone)s were investigated. Finally, we also report 

the precision building discrete poly(olefin)-like polymers and its self-assembly behavior. 
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High-performance glassy hydrogels with dense and robust associative interactions 
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In the last two decades, various tough hydrogels have been developed with elaborate designs of 
the network structure and toughening mechanism, which greatly broaden the applications of 
hydrogels as structural elements. Although the breaking strength and fracture energy of synthetic 
gels outperform those of biological tissues, the modulus of hydrogels (E: 0.01-1 MPa) is much 
lower than that of cartilages and tendons (E: 20-100 MPa). Here, we present a new kind of tough 
hydrogels with extremely high toughness and stiffness based on the formation of dense 
entanglements and robust associative interactions, which drastically reduce the mobility of 
segments.1 The hydrogels with moderate water content (~50 wt%) are in a glassy state at room 
temperature, and exhibit unique forced elastic deformation under loading. The Young’s modulus 
and fracture energy are as high as 200 MPa and 20 kJ/m2, respectively. Rheological measurements 
are performed to examine the influences of associative interactions, chain rigidity, and 
entanglements on the dynamics of the network and the glass transition temperature of the hydrogel. 
These glassy hydrogels show a broad peak of tan δ due to the wide distribution of the strength of 
associative interactions, affording the gels with excellent shape-memory property.2 We also found 
that the glassy gels have intrinsic anti-freezing property, because water molecules are tightly bound 
and confined in the glassy matrix and thus become non-freezable at ultra-low temperatures.3 These 
hydrogels with extraordinary mechanical and viscoelastic properties should open opportunities of 
hydrogel materials in load-bearing conditions. 
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Polymer complex refers to the system where different polymers associate together based on non-
covalent bonds. Different polymers are miscible on the molecular level in polymer complex fiber 
system, providing a platform to design multicomponent fibers with good compatibility and 
function tunability. We studied thermodynamics of polymer complexation, measure the enthalpy 
and entropy of the system, investigate different states of polymer complexation, and develop the 
method to shape polymer complex into fibers. First, a spinnable fluid is obtained by restricting 
complexation, and then it is extruded through a spinneret into a coagulation bath where polymer 
complexation happens and hence fibers are formed. Polymer complex fibers show interesting 
dynamics and environment adaptive behaviors. For example, a polyelectrolyte complex fiber can 
quickly adsorb water from the ambient environment and their mechanical properties show strong 
dependence on humidity. At low humidity, the fiber performs like plastics, and as humidity 
increases, the fiber will show plastic-rubber transition. Many hydrogen-bonded polymer complex 
fibers and polyelectrolyte complex fibers show time-humidity equivalence behaviors. We further 
explore the applications of polymer complex fibers, such as actuation and sensing. 
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Poly(amino acids), a.k.a. synthetic polypeptides, are important biomedical polymers, typically 

prepared by ring-opening polymerization of amino acid N-carboxyanhydrides (NCAs). In recent 

years, NCA chemistry has rapidly developed, with a plethora of new monomers and 

polymerization systems emerging. However, there remain significant challenges that have yet to 

be overcome to advance the field. The synthesis of NCA monomers usually requires strictly 

anhydrous conditions, and the side chain functional groups often need protection, which makes 

the monomer preparation, purification, and subsequent polymerization particularly challenging 

due to the high reactivity of the monomers. On the other hand, improvements are still needed in 

the molecular weight and functionalization of poly(amino acids), and the scale-up synthesis of 

some important functional poly(amino acids) has been slow. This report will focus on the current 

challenges in the synthesis and polymerization of NCA monomers, and will highlight several 

recent advancements in the field of NCA and poly(amino acid) chemistry by our research group. 

These include new methods for the synthesis of water-tolerant NCA monomers, water-assisted 

ultrafast controlled ring-opening polymerization of proline NCA, acid-catalyzed synthesis of ultra-

high molecular weight polysarcosine, and machine learning-assisted high-throughput synthesis of 

functional seleno-containing poly(amino acids). 

  



Biography 
 
 

Lei Tao got his Bachelor and Master degrees from the University of Science 

and Technology of China in 1999 and 2002, respectively. He got the PhD 

degree in 2006 from the University of Warwick (Supervised by Prof. David 

Haddleton). Then, he worked in UCLA, USA (2006-2008, with Prof. 

Heather Maynard) and the University of New South, Australia (2008-2010, 

with Prof. Thomas Davis) as research assistants. He joined the Chemistry 

Department of Tsinghua University in 2010 as an associated professor. His 

research interests include preparation of new polymers using multicomponent reactions and self-

healing hydrogels and their bio-applications. He published more than 200 articles and his H-index 

is 68 by now. He was chosen as the 2018 and 2019 Clarivate highly cited researcher (cross-field) 

and 2019 top peer reviewer (cross-field). 

  



Development of new functional polymers via multicomponent reactions 

Lei Tao* 

Department of Chemistry, Tsinghua University, Beijing, 100084, China 

leitao@mail.tsinghua.edu.cn 

 
Abstract: Multicomponent reactions (MCRs) use three or more reactants to efficiently produce 

single products with complex structures in a one pot manner. Recently, preparation of polymers 

via MCRs has been a vibrant branch in polymer chemistry. Our group introduced multicomponent 

structures in polymer chains end, main chain, and side chains, and tried to find new functions of 

these polymers. We have developed polymer antioxidants, polymer sunscreens, and anti-bacterial 

adhesion polymers using different MCRs (Figure 1)1-5. These polymers performed better than 

small molecules in in vivo experiments, which demonstrates the value of MCRs in exploring new 

functional polymers for practical applications.         

 

Figure 1. Preparation of new functional polymers via MCRs. 
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In this talk, I will introduce the design and synthesis of polymers that contain photoresponsive 

ruthenium complexes, including homopolymers, alternating copolymers, block copolymers and 

telecontrol polymers.[1-5] The coordination bonds can dissociate under light and reform in the dark. 

To demonstrate that photoresponsive metal-ligand coordination is applicable to different operating 

environments, we prepared amphiphiles, surfaces, polymer gels, thermosets, and soft robots using 

photoresponsive metallopolymers. The amphiphiles with photoresponsive coordination bonds 

showed reversible morphological transitions between spherical micelles and bowl-shaped 

assemblies for dark/light irradiation cycles. The surfaces modified with metallopolymers showed 

photoswitchable wettability and photocontrolled protein adsorption. Polymer gels with 

coordination cross-links underwent photoinduced reversible sol−gel transitions, which can be used 

for reshaping and healing. I will also show that reversible crosslinking via metal–ligand 

coordination is a new strategy for designing recyclable thermosets using commodity polymers. 

Polymers with photocontrolled metal–ligand coordination also enable the development of soft 

robots with user-defined functions. Our work demonstrates that the photoresponsive metal-ligand 

coordination is a new type of dynamic bond, which can be used for constructing responsive, 

reprocessable, switchable, and healable materials that work in a variety of environments. 
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Adhesives, as one of the most important synthetic polymer materials, play an indispensable role 

in modern industrial development and the improvement of human living standards. The rising 

demand in emerging strategic industries and high-end sectors, such as new energy, consumer 

electronics, intelligent manufacturing, and green packaging, creates an urgent need for adhesives 

with enhanced performance. Adhesion strength, as the most critical performance metric, depends 

on the fine-tuing of adhesion and cohesion forces. Unlike covalent bonds, dynamic non-covalent 

interactions can be easily disrupted by mechanical forces but are capable of reformation, providing 

a means to effectively regulate and balance internal and interfacial energies. Embracing the 

principle that "weak is stronger", my research group has been focusing on regulating dynamic non-

covalent interactions to develop high-performance adhesives, including: 

1) Achieving extremely high adhesion strength on low surface energy materials without surface 

pre-treatment by introducing ion-dipole interactions; 

2) Creating detachable adhesives with ultra-high adhesion strength that can be quickly dissociated 

and debonded by soaking into warm water through the integration of abundant hydrogen bonds; 

3) Designing commercially viable ultra-strong underwater adhesives by leveraging cation-π and 

π-π interactions. 

These advancements highlight the potential of dynamic non-covalent interactions in designing 

next-generation high-performance adhesives for diverse industrial applications. 
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Sulfur-containing polymers have attracted increasing attention, owing to their fascinating 
properties such as metal coordination ability, high refractive indices, self-healing capability, 
optoelectronic property, and so on. Currently, the lack of economic monomers and efficient 
synthetic approaches are the main difficulties in the field. Elemental sulfur with large surplus from 
worldwide petroluem industry is hence an idea source for the preparation of sulfur-containing 
polymers, despite of the challenges of poor solubility of sulfur in organic solvents and its toxicity 
to transition metal catalysts. 

In this talk, a series of elemental sulfur-based multicomponent polymerizations (MCPs) will 
be introduced to directly convert elemental sulfur to sulfur-containing polymers such as 
polythioamides, polythioureas, polythiocarbonates, and polythiophenes with well-defined 
structures, good solubility, high yields, and high molecular weights (Mws) in one step. For example, 
a catalyst-free MCP of isocyanide, sulfur, and amine was developed at room temperature, 
generating 16 polythioureas with well-defined structures, good solubility, high yields (up to 95%), 
and large Mws (up to 242 500 g/mol);1 The catalyst-free MCP of sulfur, benzyl diacids, and 
diamines could facilely realize scalable synthesis of polythioamides with aromatic structures;2 a 
KF-assisted MCP of sulfur, CH2Cl2, and aromatic diamines has enabled efficient and economic 
synthesis of various aromatic polythioureas;3 Moreover, through the efficient room temperature 
polymerization of elemental sulfur and alkynone, non-emissive poly(1,4-dithiin)s could be 
afforded, which could be completely transformed to emissive polythiophenes upon heating or 
oxidation.4 

These sulfur-based MCPs are economic, efficient, and convenient tools for the direct 
conversion from sulfur to profitable sulfur-containing functional polymers, which could accelerate 
the development of sulfur-containing polymers with diversified structures and functionalities, 
demonstrating their great potential in sustainable polymer materials. 
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Aerogel materials with excellent thermal insulation properties are in great demand for providing 
thermal protection in extreme environments, such as space and deep sea. In practical 
applications, these materials need to be tightly packed on the target surface to prevent heat 
exchange with the external environment. Furthermore, they should exhibit excellent mechanical 
properties to withstand complex mechanical loads such as bending, compression, and impact from 
objects and the external environment. As a classic thermal insulation material, silica aerogel 
exhibits rather low thermal conductivity (𝜆 < 20 mW m−1 k−1) due to its small pore size and low 
density, and is used in aerospace applications. For example, it is currently used as thermal 
insulation for the 2003 Mars Exploration Rovers, keeping the rover electronics at a relatively 
constant temperature over a temperature range of 100 °C. However, due to the weak and brittle 
nature of the silica skeletons, an external structural panel is required to protect the aerogels from 
external stress or strain, which severely limits their wide applicability under extreme conditions.  
In this report, we will show how to improve the mechanical properties of aerogel materials through 
elaborate physicochemical structure designs. In particular, the introduction of cellulose 
nanofibrous networks into mesoporous inorganic aerogel to endow the final composite aerogels 
with high thermal insulation properties and excellent bending flexibility will be highlighted. 
Finally, we will summarize and look forward to structural design and thermal insulation 
applications of fiber-reinforced aerogels in the future. 
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Semiconducting polymers have attracted much attention because of their various applications in 
the field of organic optoelectronics, such as organic light-emitting diodes, organic field effect 
transistors, and organic solar cells.1-3 Charge carrier transport is one of the most important 
functions of semiconducting polymers, which is governed by an intramolecular pathway along the 
π-conjugated backbone and an intermolecular pathway along the π-π overlaps.4 Controlling the 
orientation of semiconducting polymers to facilitate carrier mobility in desirable directions is 
critical to achieve high performance devices. 

Here we reported the design and synthesis of a V-shaped unit, triphenyleno[1,2-c:7,8-
c′]bis([1,2,5]-thiadiazole) (TPTz), featuring two 1,2,5-thiadiazole rings fused to a triphenylene 
core with strong electron-withdrawing properties and an extended conjugation plane, which was 
utilized to construct D-A conjugated polymers.5 Due to the unique V-shaped structure and large π-
conjugation plane, the resulting copolymers preferred to adopt a favorable face-on orientation. The 
application of the copolymers as donor polymers in organic solar cells will also be discussed.  
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Dimethyl sulfoxide is a solvent very familiar to synthetic chemists, with properties of high polarity, 
stability at elevated temperatures and low toxicity. Notably DMSO is highly miscible with water. 
Our group became interested in sulfoxide polymers primarily for properties associate with the high 
levels of hydration of the polar sulfinyl group, and we have reported that sulfinyl acrylate polymers 
are highly effective at resisting protein adsorption and cell attachment in the in vitro setting.1 We 
propose that these polymers and similar analogues are attractive for preparing anti-fouling surfaces 
for drug delivery2 and in medical devices.3 

The enhanced solubility arising from the sulfoxide group can result in aqueous solubility 
of polymers carrying high contents of hydrophobic moieties. Notable examples include polymers 
of N-(2-((2,2,2-trifluoroethyl)sulfinyl)ethyl)acrylamide (FSAM), introduced by us for applications 
such as simultaneous tracking by 19F MRI and drug delivery.4-5 We have observed that the 
solubility of partly-fluorinated sulfoxide polymers is temperature dependent, and that these 
polymer possess a lower critical solution temperature (LCST). In this presentation I will discuss 
the influence of molecular architecture on the LCST, in particular the effect of molecular weight 
and degree of branching in star polymers. A model of the conformational changes occurring across 
the volume phase transition we be presented based on the results of detailed NMR spectroscopic 
and molecular dynamics simulations experiments, and a comparison with other LCST polymers 
will be made. 
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The use of polymeric materials for biomedical applications has generated intense interest in the 
last twenty years. While there have been some significant successes in this field, we still have 
limited polymeric materials used in clinical applications. One of the challenges with translating 
nanoparticles to clinical use is the many biological roadblocks1 that prevent successful delivery. 
The need to understand how nanoparticle structure impacts these roadblocks  and to engineer 
smarter materials to migrate these barriers is a critical next step. This is especially important when 
we consider the use of emerging therapeutics such as nucleic acid. Self-immolative polymers have 
generated interest for the design of nanoparticle delivery systems as they can depolymerize in 
response to a range of biological stimuli and thus can be readily tuned to control the efficiency of 
therapeutic delivery. 

Herein, we discuss the development of two stimuli-responsive delivery systems based on the self-
immolative polymers of poly(ethyl glyoxylamide) (PGAm) and poly(lipoic acid) respectively. It 
was shown the PGAm system could be tuned to respond to pH in a two-staged process, which 
involved first particle disassembly followed by polymer depolymerization.2 The ability of this 
polymer to escape the endosomal compartment was then investigated. We will also discuss a novel 
lipoic acid system, which demonstrated the ability to load and release nucleic cargo in response to 
a combination of pH and redox potential, demonstrating successful transfection of plasmid DNA 
with over 80 % transfection efficiency. These studies indicate the potential of self-immolative 
nanoparticles to migrate inherent biological roadblocks for therapeutic delivery and thus provide 
useful materials of the future. 
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The evolution of designed systems for cancer therapy has offered the opportunity to treat more 
complex and refractory disease, with the benefits of limiting off target toxicities to peripheral 
organs. However, there remain key challenges around quantitatively determining the tissue specific 
drug release profile of therapies, as well as the role that biomaterials and nanocarriers play in 
directing and controlling the therapeutic response. It is crucial, then, for materials to be precisely 
engineered to allow direct assessment of their behaviour in biological systems, as well as provide 
feedback on biological responses. Central to this thinking is the development of theranostics, 
which are materials that provide both spatial and temporal information about therapeutic delivery, 
efficacy and biological response.  

Our research explores how polymers provide unique insights into the mechanism of action of drugs, 
as well as therapeutic efficacy of nanomedicines, where biological cues can be utilised to give real-
time feedback of drug effects. Alternatively, exogenous stimuli can also be applied resulting in 
material changes to the delivery system. Such stimuli can be administered as applied radiation 
(often in the form of visible/near infrared radiation), or through chemical stimuli that take 
advantage of the bio-orthogonality of defined covalent reactions. Bio-orthogonal reactions that 
take advantage of pre-targeting allow diagnostic and therapeutic probes to be administered with 
greater site-specificity to diseased tissue.1 

In this presentation, I will present our work exploring novel approaches exploiting advanced 
imaging techniques to understand the efficacy of polymer-containing drugs, as well as describe 
how we utilise the pre-targeting strategy and bio-orthogonal reactions to improve therapeutic 
delivery to tumours while providing real-time readout of therapeutic activity.2,3 By exploiting the 
multivalency and multimodality of polymeric nanomaterials, the true advantages of theranostics 
can be realised in nanomaterial systems. This approach also offers opportunities to evade immune 
recognition of nanomedicines, providing a more generalized route for establishing advanced 
delivery systems.  
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Organic radical polymers are a highly promising and environmentally benign class of 
battery material addressing many of the shortcomings of the more established metal based systems. 
In particular, free radical containing, nitroxide molecules have been of extreme interest as stable, 
cathode materials.1 In particular, the piperidine based poly(2,2,6,6-tetramethylpiperidinyloxy-4-
yl methacrylate) (PTMA) has long been the benchmark to which other nitroxide cathode materials 
are compared.2 

  
This presentation will show some of the ways that we have looked to expand the available 

nitroxide electrode materials, through hybiridisation of the isoindoiline and piperidine nitroxide 
classes to yield a variety of new classes of nitroxide polymers,3 and bipolar derivatives that allow 
for symmetrical redox batteries.5. 
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Combining synthetic and biological building blocks offers sheer unlimited potential to design 
macromolecular architectures with emerging functionalities.[1] To generate synthetic polymers, 
radical polymerization is arguably the most applied method across both fundamental research and 
industry. However, its inherent transformation of vinyl monomer feedstock into polymers with an 
all-carbon backbone prevents the incorporation of functional groups into the polymer main chain, 
thus restricting the design freedom of polyvinyl-based polymers. 
This lecture discussed how radical ring-opening polymerization can be used to endow the 
backbone of polyvinyl polymers with function. We report a synthetic strategy that enables the 
incorporation of peptides spanning all 20 standard amino acids into the backbone of polymers.[2] 
This diversification enhances the structural and functional capabilities of synthetic polymers, 
enabling the engineering of polymers to mimic complex biological structures and functions, such 
as on-demand folding into β-sheet architectures.[3] 
To exert control over the lifespan of polymer architectures, we have developed monomers that 
allow the incorporation of photochemical targets into the polymer backbone.[4] As a result, the 
traditionally unresponsive all-carbon backbone resulting from radical polymerization can be 
broken down in a flash of light. By tuning the photoscission wavelength of the embedded 
monomers and their distribution across the polymer chains, it becomes possible to cleave polymers 
selectively by choosing specific irradiation wavelengths.[5] 
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Polymer nanodiscs are challenging to make.1 This is because, self-assembly processes typically 

yield micelle shapes of minimised energy, like spheres or vesicles. Flattening such assemblies is 

more intricate, as block ratios and solvent—polymer interactions alone cannot compensate for the 

energy costs to flatten a curved surface or interface. Taking on this challenge, we designed an 

amphiphilic, tadpole-like copolymer featuring a hydrophilic linear block and a hydrophobic 

bottlebrush block.2 The linear segment assumes a coil-like conformation, while the bottlebrush 

segment adopts a stiffened, rod-like structure. Using this rod-coil architecture facilitated planar 

packing of brush segments and yielded nanoscale polymer discs via spontaneous self-assembly. A 

characteristic feature of this methodology is the possibility to select the chemical composition of 

the brush segment without compromising the disc formation. This allows the introduction of 

functionality into these amorphous core-shell nanodiscs, enabling triggered disassembly and/or 

drug release, depolymerisation, or shape-transformation. My talk will introduce our general 

approach. 
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Polymers are critical in nearly every aspect of human life. Polymers are used in our medical 
devices and personal protective equipment, vehicles, construction materials, electronic devices, 
packaging, our clothes and more. Unfortunately, we do not make polymers sustainably. Most 
polymers are manufactured from non-sustainable feedstocks, used for a limited time, and then 
discarded in landfill or incinerated. Humans have made a staggering 8 billion tonnes of plastic and 
less than 10% has been recycled.1 Of the relatively small fraction of polymers that are recycled, 
this is typically achieved through thermomechanical processing that ultimately degrades the 
material. For this reason, new platform technologies are needed so that polymers can be generally 
recycled and converted back into monomer building blocks.2 Such chemical recycling strategies 
will be necessary for interfacing the circular economy with polymer technologies. 

In this lecture, I will present two case studies on making polymers that can be chemically 
recycled. Both polymers feature a trisulfide linkage incorporated throughout the backbone that 
serves as a trigger for selective and rapid depolymerisation after the polymer has served its function. 
The first case study centres on the electrochemical or photochemical ring-opening polymerisation 
of cyclic trisulfides. These sulfur-rich materials have found use in gold mining and e-waste 
recycling, where the polymer serves as a recyclable gold sorbent.3 The second case study features 
a novel and rapid S-S metathesis reaction unique to linear trisulfides.4,5 This unusual chemistry 
can be used to make recyclable analogues of polyolefins, polyurethanes, polyamides and more. 
Prospects in the use of this novel chemistry as a platform for chemically recyclable polymers will 
be discussed. 
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Abstract 

Composite helical springs (CHSs) are mainly used in transportation and aerospace fields, such as 
automobile suspension, railway bogie and aircraft engine system. The advantages of CHSs such 
as low weight, high specific strength, high specific modulus, corrosion resistance, fatigue 
resistance and high strain energy storage capacity mean that it has great development potential. In 
this study, a high-efficiency and low-cost injection-winding manufacture method of CHSs is 
explored to simplify the manufacturing process [1]. The fibre and resin that make up the CHSs 
have been selected and optimized to improve the performance of CHSs. Performance of CHSs has 
been accurately controlled by modifying braided structure parameters of the braid angle and the 
number of layers [2]. The compression and resilience static performance and impact and fatigue 
dynamic performance of CHSs were evaluated [3-4]. Meanwhile, the numerical simulation of the 
static and impact performance was carried out to reveal the theoretical mechanism and further 
improve the performance evaluation of CHSs [5]. 
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Computational chemistry has emerged as a powerful tool for understanding and predicting 

the behaviour of chemical systems, driving innovation across various disciplines. This presentation 
will highlight the transformative role of computational chemistry in electrochemical and 
polymerization processes. We will explore how computational models and simulations can provide 
insights into complex reactions, enabling the design of more efficient and sustainable chemical 
processes and materials. The discussion will draw upon two case studies relevant to polymerization: 
alkoxyamine electrochemistry and Atom Transfer Radical Polymerization (ATRP) ligand design. 
In 2018, we reported that alkoxyamines could undergo electrochemical cleavage at ambient 
temperatures.1 This 1-electron oxidation forms an intermediate radical-cation, which can undergo 
mesolytic fragmentation to form nitroxides/carbocations or, alternatively, oxoammonium cations 
and carbon-centred radicals.2 We demonstrate that the solvent and supporting electrolyte 
significantly influence these oxidative cleavage reactions.3 Furthermore, we showcase the 
synthetic utility of this chemistry for surface functionalisation and methylation.4 The presentation 
will conclude by illustrating how computational modelling can assist in designing highly activating 
ligands for Cu-based ATRP.5 
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We have developed a range of oxygen tolerant controlled radical polymersiation techniques,1 
which  allow us to robotically synthesise and screen libraries of polymer structures for their ability 
to either (i) mimic therapeutic proteins,2,3 or (ii) to wrap individual enzymes into a so-called “single 
enzyme polymer nanoparticle”).4 
This talk will focus on the second of these applications. Wrapping enzymes in a non-covalent 
polymer shell confers remarkable benefits over bulk encapsulation and immobilisation methods. 
Because the polymer layer of such a nanoparticle is very thin, and can be installed without covalent 
modification of the protein, it can confer stability without loss of activity. Responsive polymers 
can be used to switch activity on and off, and in some cases even direct activity of the enzyme. 
These features are extremely useful in both therapeutic settings, and in materials applications such 
as the enzymatic decomposition of bulk plastics.5 
Finding a polymer that binds strongly to a given protein requires careful tuning of its architecture, 
chain length, side chain chemistry, charge distribution and hydrophobicity. We use Förster 
resonance energy transfer (FRET) to design these polymers, which enables screening in dilute 
solutions, and the design of SENS even for therapeutic enzymes, where the enzyme itself is very 
expensive.6 
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The commercial and practical importance of coatings/paints in today’s society can hardly be 
overstated. Coatings can either be solvent-based or waterborne. With the ongoing drive towards 
more environmentally friendly coatings, there is a strong desire to replace traditional solvent-based 
coatings with entirely waterborne systems. However, without the use of special additives in the 
form of e.g. organic cosolvents and coalescing agents etc, waterborne coatings typically exhibit 
crucial shortcomings related to film formation and film properties. The challenge with waterborne 
coatings is largely related to the so called film formation dilemma1 - the polymer nanoparticles 
need to have a low glass transition temperature (Tg) in order for film formation to occur from an 
aqueous dispersion, but a high Tg is needed to achieve good mechanical properties of the film. 
 We are working to address this challenge by nanoengineering the morphological structures 
of aqueous dispersion nanoparticles by use of aqueous RAFT emulsion polymerization. The main 
concept relies on exploitation of kinetic effects of compartmentalization within nanoreactors 
(polymer particles) to synthesize multiblock copolymer nanoparticles.2-4 Under appropriate 
conditions, polymer nanoparticles with an onion-like multilayered structure can be obtained. This 
enables us to carefully tune the nanoparticle structure, thereby enabling us to address both film 
formation issues and film properties using this novel concept.5 
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Contemporary macromolecular chemistry has matured to a point where virtually any polymer 
structure can be synthesized via combinations of controlled polymerization approaches, post-
polymerization modification and efficient ligation strategies. Still, often large hurdles have to be 
overcome to take the next step in research, that is being able to provide such complex materials 
reliably on significant scale for use in advanced applications. Digital chemistry, the fusion of 
classical chemistry with modern data science and computer science, opens an attractive avenue to 
overcome these issues. A further solution to the problem is to make use of continuous flow 
synthesis techniques. Flow reactors are associated with high reproducibility, intrinsically simple 
reaction scale-up and improved product qualities due to significant reduction of side reactions. 
Being an established method especially in the pharmaceutical chemistry domain, full potential 
with regards to macromolecular synthesis did not unfold until very recently. Among others, the 
benefits of using online-monitoring, reactor automation and machine-learning will be discussed 
and the development of fully autonomous based reactor systems is presented. 
 
Machine-assisted synthesis of polymers is shown to be superior in accuracy in synthesis, which in 
turn makes this type of robotic chemistry a cornerstone in any material or cheminformatics 
investigation. Generally, the introduction of smart algorithms in synthesis control opens avenues 
into the digital chemistry space. We will show how these methodologies can be exploited to build 
an autonomous polymer synthesizer. Further, we will delve into nanoparticle synthesis and targeted 
nanoprecipitation of block copolymers using machine-learning assisted synthesis. In the last part 
of the presentation, challenges with respect to chemical recycling of polymers will be discussed, 
specifically on the flow depolymerization pathway for bulk commodity products such as 
poly(methyl methacrylate).4 
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Multivalent metal-ion batteries, including Al3+, Zn2+, or Mg2+, use abundant elements in Earth’s 
crust and provide much higher energy density than lithium-ion batteries.1 In particular, aluminium-
ion batteries (AIBs) and zinc-ion batteries (ZIBs) have attracted great attention because of their 
high earth-crust abundance and low toxicity, which makes them attractive as sustainable and low-
cost energy storage systems. When inorganic cathodes are used as cathodes, large sizes of Zn2+ 
and Al3+ ions make the kinetics sluggish. Organic redox active molecules (ORMs) have been 
employed as cathode materials in various metal/organic hybrid batteries.2 In most studies, ORMs 
are redox-active small molecules or conjugated polymers. Whilst conjugated polymers avoid the 
dissolution of active materials into the electrolytes, their capacitance-like storage leads to varying 
redox potentials due to different doping levels.3 Therefore, delivering a reversible and stable 
discharge voltage remains challenging when ORM cathodes in multivalent metal-ion batteries. 
Non-conjugated redox-active polymers (RAPs) have an aliphatic backbone and pending redox-
active functionalities. Their redox potentials are governed by the relatively constant redox-active 
groups. Nitroxide radical polymers (NRPs) are some of the most promising RAPs, providing 
corresponding batteries with high voltage, fast charging, and long cyclability. NRPs have been 
implemented in various battery systems. The stable redox behavior of NRPs in water makes it an 
ideal material for aqueous batteries. Our recent work focused on (i) exploring the possibility of 
using NRPs in aqueous AIBs4,5 for the first time and (ii) promoting practical applications of NRPs 
in aqueous ZIBs. We believe using non-conjugated NRPs for aqueous multivalent metal-ion 
batteries holds great promise as alternative safe and sustainable energy storage devices. 
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The rise of antibiotic-resistant bacteria poses a major threat to global health, driving an urgent need 
for novel antimicrobial agents that can overcome resistance mechanisms. Antimicrobial polymers 
have emerged as a promising class of compounds in this pursuit. Unlike traditional antibiotics that 
target specific cellular processes, these polymers are generally believed to act through nonspecific 
membrane disruption, leading to the perception that bacteria are unlikely to develop resistance 
against them. 

This talk will examine that assumption by exploring the structure-activity relationships and 
mechanisms of action of amphiphilic dendrimers, a class of antimicrobial polymers. We will 
present data demonstrating their efficacy against Gram-positive and Gram-negative bacteria, 
including resistant strains and biofilms. However, through correlative metabolomics and advanced 
imaging techniques, we have uncovered evidence that bacteria can mount adaptive responses to 
these membrane-active agents. 

Specifically, we have mapped metabolite fluxes in bacteria exposed to amphiphilic dendrimers, 
revealing the acceleration of certain biochemical pathways that may help counteract membrane 
disruption. These findings suggest that, contrary to conventional wisdom, bacteria may be able to 
evolve resistance mechanisms even against nonspecific antimicrobial polymers. This work 
provides new insights into bacterial adaptation and highlights the need for continued vigilance and 
innovation in antimicrobial development. Understanding these adaptation mechanisms will be 
crucial for designing more effective antimicrobial polymers and developing strategies to prevent 
resistance 
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Precision polymer synthesis makes it possible to create polymers with various architectures, 
including specific sequences of monomers and blocks. We have been focusing on new activation 
or mediation methodsi for RAFT polymerization. These methods include photo iniferter-RAFT, 
Sono-RAFT, Fenton-RAFT, blood-catalyzed RAFT, RAFT initiated by the growth of bacteria, 
and those under specific environments such as ionic liquids. The presence of ionic liquids has not 
only significantly increased the reaction rate of iniferter-RAFT but also made PET-RAFT oxygen-
tolerant under organic catalysts.ii Another example is the semi-bio-Fenton RAFT polymerization 
of DMA, achieving full conversion within 60 minutes without a loss of chain-end fidelity. Using 
a robot, we were able to create a 39-block copolymer with block sequence control, enabling the 
creation of different complex polymer structures with just a click of the mouse.iii The capacity of 
robotic synthesis is the first module of our design process for digital polymer synthesis. 

Antimicrobial resistance is a major threat to human health, and this potential 'pandemic' looms as 
a public health crisis. There is an urgent need to find alternative antibiotic drugs to combat this 
global issue. Our work on Structurally Nano-Engineered Antimicrobial Peptide-Polymers 
(SNAPPs), amino acid-based (lysine and valine) star polymers with 8-32 arms, shows promise as 
potential alternative antimicrobial materials with clinical potential to combat antimicrobial 
resistance.iv We have found that molecular simulations can help us understand why SNAPPs target 
bacterial cells and do not cause toxicity to normal cells. This work can potentially contribute to 
the data bank, forming part of the loop for digital polymer synthesis. 
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