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Abstract

A key feature of the 2008 revision of the System of National was the treat-

ment of R&D expenditure as investment. The question arises whether the

standard approach towards accounting for growth contribution of assets

is justified given the special nature of R&D that provides capital services

by affecting the working of other inputs as a whole - akin to technical

change and often requires up-front investment with sunk costs. We model

R&D inputs with a restricted cost function and compare econometric es-

timates with those derived under a standard index number approach but

find no significant differences. However, we cannot reject the hypothesis

of increasing returns to scale. The standard MFP measure is then bro-

ken down into a scale effect and a residual productivity effect, each of

which explains about half of overall MFP change. The scale effect points

to the importance of the demand side and market size for productivity

growth. We also compute mark-up rates of prices over marginal cost and

find widespread evidence of rising mark-ups for the period 1985-2015.

∗We thank participants at the World KLEMS Conference, Harvard University

May 2018 for useful remarks. Opinions expressed in this paper are those of the

authors and do not necessarily reflect those of the OECD or its Members
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1 Introduction

One of the central achievements of the 2008 revision of the System of National

Accounts (SNA 2008 – European Commission et al. 2009) was the treatment

of research and development expenditure (R&D) as investment that gives rise

to knowledge assets. With the completed implementation of the SNA 2008

among OECD countries by end-2016, users of statistics now dispose of sets of

estimates for the investment in R&D as well as software (already present in the

1993 revision) along with estimates of more traditional non-financial produced

assets (machinery, equipment, structures).

As all these assets provide inputs into production in the form of capital ser-

vices it is only natural to base productivity estimates on the whole set of assets.

Indeed, the economics literature has preceded national accounts standards and

embraced an even broader set of intangibles in an attempt to account for new

sources of economic growth and competitiveness. The work by Corrado, Hulten

and Sichel (2005) who measured intangible capital for the United States and

employed it in a new set of productivity estimates was a seminal piece that

spawned other work, applying similar or refined concepts to other countries and

time periods (OECD 2013, Goodridge et al 2016).

There are, however, several issues when it comes to using R&D assets in

productivity measurement. First is that R&D projects often involve sunk costs

and upfront investment. These sunk costs need to be recuperated over the eco-

nomic service life of the R&D asset, requiring a mark-up over marginal costs of

production. Sunk costs thus imply increasing returns to scale at the firm level.

Increasing returns to scale may also arise at the aggreage level due to exter-

nalities and spill-overs that R&D asset generate1: “. . . the level of productivity

achieved by one firm or industry depends not only on its own research efforts but

also on the level or pool of general knowledge accessible to it.” (Griliches 1995,

p.63). The implication for measurement is that aggregate returns to scale may

not be constant but increasing. A first objective of the analysis here is to test

for the presence of increasing returns to scale when R&D assets and to measure

the evolution of mark-ups and to distinguish those associated with returns to

0The specifics of measuring R&D expenditure are laid down in detail in the Frascati Manual

(OECD 2015). How the intellectual property assets that are the fruit of R&D investment

should be measured in practice has been elaborated in OECD (2010).
1For an overview of the literature see Senna (2004).
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scale. We shall conclude that the hypothesis of increasing returns cannot easily

be rejected and there is a pattern of rising mark-ups in nearly all countries of

the sample.

A second issue associated with R&D capital is how its services enter the

production process and the consequences for productivity measurement. This

was highlighted in work by Parham (2007), Pitzer (2004), and Diewert and

Huang (2011). Pitzer (2004) observed that R&D capital functions as a source

of ’recipes’. Diewert and Huang (2011) start their discussion of R&D assets

by explaining that “...we do not treat the stock of R&D capital as an explicit

input factor. Rather, we define the stock of R&D capital to be a technology

index that locates the economy’s production frontier. An increase in the stock

of R&D shifts the production frontier outwards.” (p. 389). R&D assets thus

provide capital services by enabling production, for example through licences

that permit usage of knowledge or intellectual property (IP) in production. This

suggests treating capital services from R&D assets as a technology index that

affects the working of all other inputs as a whole so that R&D capital services

operate akin to autonomous neutral technical change.

If one adopts this reasoning, production takes place with services from non-

R&D inputs conditional on a given stock of R&D assets (and conditional on a

given level of other, ‘autonomous’ technical change). This amounts to treating

R&D capital as a quasi-fixed input. The theoretical tools to deal with quasi-

fixity have long been developed in the form of restricted profit and restricted cost

functions (Lau 1976, McFadden 1978, Berndt and Fuss 1986, Schenkerman and

Nadiri 1984). When an input is quasi-fix it cannot be adjusted instantaneously

– a plausible notion for R&D assets with sometimes long gestation periods.

One consequence is that the assumption of period-to-period cost minimising

behaviour of producers with regard to the quasi-fixed factor of production no

more holds. Then, the user costs for R&D assets as constructed under standard

cost-minimising assumptions cannot be used to approximate production elastic-

ities of R&D (or cost elasticities in a dual formulation). Exclusive reliance on

an index number approach is no more possible and R&D production elasticities

have to be estimated econometrically.

We use data for 20 OECD countries over the period 1985-2015 and esti-

mate cost elasticities of R&D capital to test whether these diverge significantly

from the standard non-parametric elasticities. While there are variations across
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countries and over time, it turns out that on average the econometric point

estimate lines up rather well with the index number results. This is in par-

ticular the case when we allow for non-constant returns to scale at the same

time. We will therefore conclude that the theoretical case for treating R&D

assets as quasi-fixed inputs does not outweigh the practical disadvantages that

it entails and that can be avoided with standard index number results that do

not assume quasi-fixity of the R&D input. There is in particular the need to

revert to econometric techniques which reduces reproducibility of results, and

the need to accept constancy of R&D elasticities over time and across countries

– at least in a case where the number of observations is limited.

A third – and related - issue is how exactly to construct R&D capital stocks.

Unlike other assets, market prices for R&D investment are hard to get by, given

that much R&D activity is undertaken within firms (‘own account investment’)

with the consequence that R&D investment is valued at cost. Similarly, prices

of the capital services from R&D assets are essentially reflective of the price

change of the inputs used in their creation, much of it being the wage rate of

R&D personnel. This is an added reason for testing whether cost shares are

reflective of cost elasticities of R&D, as explained above. Measurement prob-

lems do not stop with valuation of the asset, however. There is also an issue of

how to determine the rate of depreciation which, in the case of R&D is driven

by obsolescence rather than wear-and-tear as with other capital goods. Lastly,

because R&D assets are intangible, they can easily be transferred, including

across national borders. 2 R&D assets can therefore appear and disappear in

lumps, leading to corresponding changes in measured capital stocks and ser-

vices. Large additions or subtractions from stocks require careful construction

of the measures of R&D stocks with attention paid to infra-annual movements:

whether an asset appears at the beginning or at the end of an accounting year is

no more an ancillary measurement question. Annex A describes at some detail

how we proceeded with the measurement of R&D stocks. All our measurement

proposals are consistent with the 2008 System of National Accounts and fit also

with the broader blueprint of productivity measurement in a national accounts

2A widely discussed example is Ireland where trans-border movements of intellectual prop-

erty assets and the associated production and income flows gave rise to a staggering 25 percent

rise in real GDP in 2015 and a similar unusual two-digit growth in labour productivity. While

Ireland may have brought the issue of measuring and production and productivity into sharp

focus, this constitutes by no means a unique case.
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framework as developed by Jorgenson and Landefeld (2004).

The paper at hand is organised as follows. Section 2 deals with productiv-

ity measurement under non-constant returns to scale and a quasi-fixed R&D

input. In Section 3 we follow Diewert et al. (2011) and combine index number

and econometric approaches to derive a parsimonious way of testing for quasi-

fixity of the R&D input and non-constancy of returns to scale. As our results

regarding quasi-fixity are inconclusive, and in light of many practical consid-

erations, we opt for a treatment of R&D as a standard flexible input. We do,

however, maintain the finding of increasing returns to scale and the last part of

Section 3 uses these results to decompose the OECD Multi-factor productivity

(MFP) index into a part that reflects scale effects and into a part that reflects

autonomous productivity change. The Section finishes with the dual picture to

the MFP decomposition, mark-ups over marginal and average costs.

2 IP assets in productivity measurement

2.1 Technology

We characterise technology by a production function where labour and tra-

ditional capital inputs are combined with services from a knowledge asset to

produce aggregate output:

Q = fQ(X,R, t) (1)

In (1), Q is the volume of aggregate output; X ≡ (X1, X2, ...) is the vector

of labour and various types of non-R&D capital; R is the stock of R&D and t

is a time variable to capture autonomous productivity change. fQ(X,R, t) is

continuous and non-decreasing in inputs X, R and t. No constant returns are

imposed here. This is motivated by the desire to maintain a general approach

but also by the nature of R&D: its creation typically entails large, fixed upfront

investment expenditure that needs to be recuperated over the economic service

life of the asset. The implication is that prices will not be set at short-run

marginal costs of production. There may also be mark-ups on marginal costs

above and beyond those needed for cost recovery - a point to which we shall

return in greater detail below.

In addition to allowing for non-constant returns to scale, we treat R as a
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quasi-fixed input in the sense of McFadden (1978), Schankerman and Nadiri

(1984) or Berndt and Fuss (1986). As a quasi-fixed input, R takes the role

of a pre-determined variable that cannot be adjusted instantaneously and in

a cost-minimising manner as is usually assumed in productivity measurement.

By treating the quantity of R&D as a predetermined, exogenous variable it

can also be interpreted as a ‘shifter’ to non-R&D input requirements, similar

to autonomous productivity change that is captured by the time variable t3.

For non-R&D inputs X the usual assumption of instantaneous cost-minimising

adjustment is maintained.

The production function above characterises technology and can be used as

the framework for measuring autonomous technical change. The latter is then

measured as the shift of the production function or the extra output that a

given input bundle can produce with the passage of time. Alternatively, a cost

function can be used to characterize a production unit’s technology. Then, au-

tonomous technical change is measured as the shift of the cost function, or the

reduction in costs to produce a given output, for given input prices. Primal

(production function)-based and dual (cost function)-based productivity mea-

sures coincide when production is characterised by constant returns to scale,

when production is efficient and when producers minimise costs. Primal and

dual measures will divert, however, when one or several of these conditions fail

to hold 4. Similarly, the degree of returns to scale in production can be mea-

sured based on the production or on the cost function. Diewert et al (2011)

point to the strong intuitive appeal of a cost-based measure of scale elasticity as

the percentage change in total cost due to a one percent increase in the quantity

of output, for a given level of input prices 5. Further, cost-based productivity

3Formally, this requires treating R (or t) as separable from X so that the rate by which

a change in R (or t) affects output is independent of the rates of substitution between the

elements of X. The concept of weak separability is due to Sono (1961) and Leontief (1947).

Separability is a rather restrictive assumption but Diewert (1980) offers a way forward with

his Method III (p.455 ff.) where he shows that price and quantity indices can be constructed

using observable prices and quantities only if one is ready to accept that these aggregates are

conditional on reference values of variables outside the aggregate (R or t in the case at hand)

that are averages of their realisations in comparison periods.
4See Balk (1998) for a comprehensive overview of the various primal and dual productivity

measures and their relationship.
5While not relevant for the present case where we consider an aggregate measure of output,

a cost function-based measure of the returns to scale has the advantage of easily allowing for

changes in the composition of output.
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measures allow for a simple set-up of producer behaviour on output markets

when competition is imperfect. We shall therefore make use of the following

restricted (variable) cost function:

C(Q,wX , R, t) = min
X

(
∑
i

wXiXi | fQ(X,R, t) ≥ Q) =
∑
i

wXiXi. (2)

The general properties of the restricted cost function were established by

Lau (1976) and McFadden (1978). Early empirical references that used the

variable cost function include in particular Caves, Christensen and Swanson

(1981), Schankerman and Nadiri (1984), Berndt and Fuss (1986) and Morri-

son (1992). C(Q,wX , R, t) reflects the minimum variable cost of producing Q,

given a vector of input prices wX , and a level of knowledge assets R as well as

autonomous, ‘costless’ technology t. One notes that (2) assumes cost minimisa-

tion by producers only in regards to X, and is conditional on a level of R and t.

The second equality in (2) states that minimised variable costs equal observed

variable costs
∑

i wXiXi . We thus abstract from cases of waste or inefficient

production where actual costs exceed minimum costs. C(Q,wX , R, t) captures

short-run variable costs.

Shepard’s (1953) Lemma holds for the variable cost function: for non R&D

inputs Xi, (i = 1, 2, ...) factor demand equals marginal cost changes associated

with a change in input prices: ∂C(Q,wX , R, t)/∂wXi = Xi(Q,wX , R, t). For

the R&D input, we define a shadow price wRS as the marginal reduction in

variable costs due to a marginal increase in R: ∂C(Q,wX , R, t)/∂R ≡ −wRS .

This shadow price (or rather, shadow user cost) of R&D is unknown and may or

may not be close to the computable user cost of R&D, wR, whose measurement

is isomorphic to the user costs of other produced assets. The shadow price

wRS can only be evaluated econometrically whereas wR lends itself to an index

number approach.

To derive a measure of technical change, we start by differentiating (2) totally

and obtain a continuous time expression for the growth rate of short run variable

costs:
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dlnC(Q,wX , R, t)

dt
=

∂lnC(Q,wX , R, t)

∂lnQ

dlnQ

dt
+
∑
i

∂lnC(Q,wX , R, t)

∂lnwXi

dlnwXi

dt
(3)

+
∂lnC(Q,wX , R, t)

∂lnR

dlnR

dt
+
∂lnC(Q,wX , R, t)

∂t
.

The cost elasticity of output is the definition of (inverted) returns to scale

and we shall denote ∂lnC(Q,wX , R, t)/∂lnQ ≡ 1/ε. Thus, there are increas-

ing, constant, or decreasing returns to scale in short term variable costs if

ε exceeds, is equal to, or is smaller than one. The last expression in (3),

∂lnC(Q,wX , R, t)/∂t, captures the short-run measure of autonomous techni-

cal change or the shift of the restricted cost function over time. With Shepard’s

Lemma and the definition of the R&D shadow price, and using simplified nota-

tion by setting C(Q,wX , R, t) = C, (3) is re-written as:

dlnC

dt
=

1

ε

dlnQ

dt
+
∑
i

wXiXi

C

dlnwXi

dt
− wRSR

C

dlnR

dt
+

∂lnC

∂t
. (4)

Next, define a Divisia quantity index of non-R&D inputs, dlnX/dt, that

equals the Divisia index of deflated variable input costs:

dlnX

dt
≡
∑
i

wXiXi

C

dlnXi

dt
=
dlnC

dt
−
∑
i

wXiXi

C

dlnwXi

dt
. (5)

Combining (4) and (5 gives rise to the following two, equivalent expressions:

dlnX

dt
=

1

ε

dlnQ

dt
− wRSR

C

dlnR

dt
+
∂lnC

∂t
;

dlnQ

dt
= ε

(
dlnX

dt
+
wRSR

C

dlnR

dt
− ∂lnC

∂t

)
(6)

The first line in (6) states that non-R&D input growth depends positively

on output growth, and negatively on the growth of R&D and time-autonomous

technical change (∂lnC/∂t ≤ 0) – fewer inputs are needed for a given output

when technology and R&D inputs increase. The second line in (6) reverts this

into a growth accounting equation where output growth is explained by the com-

bined growth of non-R&D inputs, R&D inputs and time-autonomous technical
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change. Combined inputs and technical change are augmented by the degree of

short-run returns to scale.

To compare the short-run (restricted) relationships in (6) with their long-run

(unrestricted) counterparts, we define an unrestricted cost function

C∗(Q,wX , wR, t) . Here, the shadow price of R&D equals its computable user

costs (wRS = wR) and demand for the R&D input R∗(Q,wX , wR, t) is always

in equilibrium, implicitly defined via

−∂C(Q,wX , R, t)

∂R
= wR. (7)

The full expression for the unrestricted cost function is

C∗(Q,wX , wR, t) = C(Q,wX , R(Q,wX , wR, t), t)) + wRR(Q,wX , wR, t). (8)

It is now possible to derive the relationship between restricted and unre-

stricted elasticities (Schankerman and Nadiri 1984) by differentiating (8) and

making use of (7):

∂lnC∗

∂lnQ
=

∂lnC

∂lnQ

C

C∗ =
1

ε

C

C∗ ≡
1

ε∗
;

∂lnC∗

∂t
=

∂lnC

∂t

C

C∗ ;

∂lnC∗

∂lnwXi
=

∂lnC

∂wXi

C

C∗ =
wXiXi

C

C

C∗ i = 1, 2, ... (9)

∂lnC∗

∂lnwR
=

wRR

C∗

The passage between unrestricted and restricted cost functions and the asso-

ciated measures of productivity, returns to scale and cost elasticities of non-R&D

inputs is thus rather straight forward and achieved by multiplying the short-

term expressions by C/C∗, the share of non-R&D inputs in total costs. For

instance, expanding the second line in (6) by C/C∗ yields:

dlnQ

dt
=

ε

C/C∗

(
C

C∗
dlnX

dt
+
wRSR

C

C

C∗
dlnR

dt
− C

C∗
∂lnC

∂t

)
= ε∗

(
C

C∗
dlnX

dt
+
wRSR

C∗
dlnR

dt
− ∂lnC∗

∂t

)
= ε∗

(
dlnZ

dt
− ∂lnC∗

∂t

)
(10)
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Here we have defined the short-run Divisia quantity aggregate of all inputs

as dlnZ
dt ≡ ( C

C∗
dlnX
dt + wRSR

C∗
dlnR
dt ). Similarly, we can define an unrestricted,

long-run Divisia quantity aggregate of inputs as dlnZ∗

dt ≡ ( C
C∗

dlnX
dt + wRR

C∗
dlnR
dt ).

The OECD measures MFP growth as the difference between output and

aggregate input growth (OECD 2017, Schreyer et al 2003, Schreyer 2010). This

MFP growth can now be broken down into three effects: one that captures

the difference between restricted and unrestricted measures of inputs, one that

captures the effect of returns to scale and one that captures technical change:

MFP ≡ dlnQ

dt
− dlnZ∗

dt

= ε∗
(
dlnZ

dt
− ∂lnC∗

∂t

)
− dlnZ∗

dt
using (10)

= ε∗
dlnZ

dt
− ε∗ ∂lnC

∗

∂t
− dlnZ∗

dt
− ε∗ dlnZ

∗

dt
+ ε∗

dlnZ∗

dt

= ε∗
(
dlnZ

dt
− dlnZ∗

dt

)
+ (ε∗ − 1)

dlnZ∗

dt
− ε∗ ∂lnC

∂t

= ε∗
(
wRSR

C∗ − wRR

C∗

)
dlnR

dt
+ (ε∗ − 1)

dlnZ∗

dt
− ε∗ ∂lnC

∂t
. (11)

When shadow elasticities of R&D equal computable user cost shares (wRSR
C∗ =

wRR∗

C∗ , dlnZdt = dlnZ∗

dt ), the first term in the last line of (11) vanishes and MFP

growth is reduced to a scale effect and to a technical change effect. Equation

(12) below presents the same MFP decomposition in a slightly different form

and confirms that with constant returns to scale (ε∗ = 1), MFP simply equals

the shift in the cost function:

MFP = (ε∗ − 1)
dlnZ∗

dt
− ε∗ ∂lnC

∂t
for

wRSR

C∗ =
wRR

∗

C∗

=

(
1− 1

ε∗

)
dlnQ

dt
− ∂lnC

∂t

= −∂lnC
∂t

for ε∗ = 1. (12)

2.2 Mark-ups

Output prices that are equal to marginal variable costs (of non-R&D inputs)

are insufficient to recover the fixed costs that may have been needed to generate

or purchase the R&D asset in the first place. Even prices that are equal to
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total marginal costs may not cover average costs in the presence of longer-

term increasing returns to scale. Thus, there has to be a mark-up over total

marginal costs. There may also be an additional mark-up M above and beyond

average costs, i.e., what is needed to avoid losses. Its level will depend on

market conditions, and on the degree of competition under which Q is sold.

This additional mark-up could also reflect returns to other, unmeasured assets.

We shall return to the interpretation of mark-ups when presenting results.

To place M into context we recall the accounting relationship for value-added

of aggregate output Q:

PQQ =
∑
i

wXiXi + wRSR+M =
∑
i

wXiXi + wRR+M∗ (13)

PQQ represents total value-added (GDP at the economy-wide level), and∑
i wXiXi is the value of non-R&D inputs. Both are measurable. In the short-

term restricted case where R commands the shadow price wRS , the sum wRSR+

M can observed but cannot be broken into its parts. In the unrestricted case

the cost of R&D services are measured through wRR and M∗, the longer-run

mark-up over average costs, can be measured residually.

Let the mark-up rate m of prices over marginal costs in the restricted case

and let the mark-up rate m∗ of prices over marginal costs in the unrestricted

case be defined by the following relationship:

PQ =
∂C

∂Q
(1 +m) from which it follows that

PQQ

C
=

∂C

∂Q

Q

C
(1 +m) =

1

ε
(1 +m) for the restricted case; and

PQQ

C∗ =
1

ε∗
(1 +m∗) for the unrestricted case such that

(1 +m∗) = ε∗
PQQ

C∗ = ε∗[1 +M∗/C∗] = ε∗
1

1−M∗/PQQ
. (14)

The last line in (14) reproduces a well-known identity: (one plus) the mark-up

rate over marginal costs equals the degree of returns to scale times (one plus)

the average mark-up rate M∗/C∗ or an an expression that rises with the profit

rate M∗/PQQ. In the absence of ‘pure’ profits, (M∗ = 0), the mark-up rate

over marginal costs will equal returns to scale. When M∗ > 0 and there are

constant returns to scale (ε∗ = 1), all mark-ups will reflect ‘pure’ profits.
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3 Empirical implementation

3.1 R&D cost shares – too low, too high, about right?

While the relationships above were derived in continuous time, actual data

comes in discrete form – annual observations in the case at hand – and the

relevant relationships need to be expressed in discrete form. We use Törnqvist

indices to express equations (6) in discrete time6:

∆lnXt =
1

ε
∆lnQt − 0.5

(
wt

RSR
t

Ct
+
wt−1

RS R
t−1

Ct−1

)
∆lnRt −∆πt

∆lnQt = ε

[
∆lnXt + 0.5

(
wt

RSR
t

Ct
+
wt−1

RS R
t−1

Ct−1

)
∆lnRt + ∆πt

]
(15)

In (15), ∆lnXt ≡ lnXt − lnXt−1 denotes the logarithmic growth rate of X

between periods t and t−1 and the same notation is used for the other variables.

The relations in (15) will constitute the main vehicle to assess shadow prices

of R&D inputs, short-run returns to scale and technical change. Note that in

(15) the unknown terms are ε, 0.5
(

wt
RSRt

Ct +
wt−1

RS Rt−1

Ct−1

)
and ∆πt that will need

to be estimated. This requires assuming constancy of 0.5
(

wt
RSRt

Ct +
wt−1

RS Rt−1

Ct−1

)
.

The non-R&D input aggregate ∆lnXt is measured via index numbers, derived

from the restricted cost function. This hybrid approach is due to Diewert et al.

(2011) who applied it for estimates of returns to scale in Japanese manufactur-

ing, albeit with an unrestricted cost function. Main advantages of the hybrid

approach are parsimony in the number of parameters to be estimated and a

strong theoretical basis as relations are directly derived from flexible functional

forms. In a world of perfect data and producer behaviour that is fully in line

with economic theory, it would suffice to estimate either the first or the second

equation of (15). But measurement errors will lead to different results depend-

ing on whether the direct or the reverse formulation is estimated as further

discussed below . Re-formulating (15) for estimation gives:

6This can be justified more rigorously by assuming that the restricted cost function is of

the translog form (introduced by Christensen et al. 1971 and generalised by Diewert 1974).

As a flexible functional form it approximates an arbitrary cost function to the second degree.

As Diewert (1974, 1976) has shown, a Törnqvist index is then an exact representation of the

change in the cost function.
6Note that 15 is not a system of simultaneous equations.
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∆lnXt = αa0 + αa1∆lnQt + αa2∆lnRt + µt
a

∆lnQt = αb0 + αb1∆lnXt + αb2∆lnRt + µt
b. (16)

In (16) we have assumed that time autonomous technical change follows

a stochastic process around a long-term average: −∆πt = αa0 + µt
a in the

first expression of (16) and ∆πt/ε = αb0 + µt
b in the second expression of (16)

with productivity shocks µt
a and µt

b. A well-known and long-standing issue in

the estimation of production or cost functions is that productivity shocks are

correlated with factor inputs, thus creating an endogeneity problem when (16)

is estimated. Estimation of the reverse regression does not solve the issue – the

R&D input still figures as an independent variable with potential correlation

with µt
b. We use time dummies and country-specific fixed effects in the error

term to at least partially address this issue.

Instrumental variables are another avenue towards addressing the endogene-

ity problem. At the same time, they tend to give rise to other problems. Diewert

and Fox (2008) provide an in-depth discussion of estimation in a similar con-

text and note in regards to the use of instrumental variables: “Since different

researchers will choose a wide variety of instrument vectors [. . . ], it can be seen

that the resulting estimates [. . . ] will not be reproducible across different econo-

metricians who pick different instrument vectors” (p.186). Reproducibility and

simplicity are major concerns in the present setting as our work aims at provid-

ing guidance for producing periodic productivity statistics, typically by National

Statistical Offices. Instrumental variables may also introduce other problems,

if they are not completely exogenous, and results may be very sensitive to the

choice of instruments (Burnside 1996). Basu and Fernald (1997) find that aggre-

gation effects are important and that these effects are correlated with demand

shocks. This may be exacerbated by relatively weak correlation of instruments

with the explanatory variables which leads Basu and Fernald (1997) to conclude

that “[. . . ] instruments that are both relatively weak and potentially correlated

with the disturbance term suggest that instrumental variables may be more bi-

ased than ordinary least squares.” (p. 258). We therefore follow Diewert and

Fox (2008), Basu and Fernald (1997, 2002) and Roeger (1995) and rely on OLS

estimates.

Another, related point is that all variables – and in particular the R&D
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variable - are likely measured with error 7 . When there is a measurement error

in the regressor and it is of the classical type, i.e., independent of the true value of

the variable, OLS estimates have been shown to under-estimate the magnitude of

the regression coefficient (see, for instance Hyslop and Imbens 2001). 8 Klepper

and Leamer (1984) have demonstrated that with classical measurement error

in the two-variable case the true value of the regression coefficient lies between

the estimated coefficients 9 from the direct and the reverse regression. Our

estimation strategy is to apply OLS to both expressions in (16) and so obtain

bounds for the coefficients. Estimation results from a panel data set for 20

OECD countries and for the period 1985-2015 are shown in (17) where fixed

effects for countries and years have been applied and standard errors are shown

in brackets:

∆lnXt = 1.008
(0.316)

+ 0.533
(0.026)

∆lnQt − 0.045
(0.008)

∆lnRt; adjR2 = 0.65;DF = 564

∆lnQt = 1.011
(0.388)

+ 0.797
(0.039)

∆lnXt + 0.115
(0.009)

∆lnRt; adjR2 = 0.77;DF = 564.

(17)

All coefficients are significant and show the right sign. However, as expected,

direct and reverse regression lead to very different measures of returns to scale

and of shadow prices for the R&D asset. In particular, short-run returns to

scale are either 1/0.530 =1.88 when based on the first result in (17) or 0.797

when based on the second result in (17). The cost elasticity of the R&D as-

set as implied by the first regression equals wRSR/C
∗ = (wRSR/C)(C/C∗) =

7The econometric issues with using R&D in a production function have long been discussed

(e;g., Griliches 1998) but never been fully satisfactorily resolved. The work here harks back

to a long tradition of analysing R&D in a production context, pioneered by Griliches (1973)

and recently reviewed by Ugur et al (2016).
8When there is classical measurement error in both the regressor and the dependent vari-

able, the OLS bias cannot in general be signed, unless it is assumed that the measurement

errors of the regressor and the dependent variable are independent in which case the downward

bias in regression coefficients remains.
9Klepper and Leamer (1984) also demonstrate that in the case of three variables, the true

value of the coefficients lies inside the triangular area mapped out by these three regressions.

We refrain from formally setting out all three regressions – i.e., also including a specification

where R&D is the dependent variable because such a specification would be very hard to

justify on economic grounds. It is very unlikely that R&D capital services are driven by

contemporaneous output and non-R&D inputs.
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(wRSR/C
∗)/(1+wRSR/C

∗) = 0.045/(1+0.045) = 0.043. The cost elasticity of

R&D as implied by the second regression equals wRSR/C
∗ = [(εwRSR/C)/ε][1+

εwRSR/εC] = (0.115/0.797)/(1 + 0.115/0.797) = 0.126. Thus, our lower bound

for the cost share as recovered by the estimation is around 4% and the up-

per bound is around 13%. We thus find a rather large possible range of cost

elasticities for R&D 10.

Compare these point estimates with the descriptive statistics for the cost

shares wRR/C
∗ that have been computed with a standard index number ap-

proach: their mean and median are around 9.7%, with a minimum value of

around 2%, and a maximum value of 66% 11. Figure (1) below shows the fre-

quency distribution of all wRR/C
∗, along with the upper and lower boundaries

from the regression results. About 2/3 of all computed values lie within these

bounds and we conclude that the econometric results do not offer significant

additional insight over the unconstrained index number results.

Figure 1: Cost-elasticities of R&D: distribution of unrestricted measures and

econometric results

Source: authors’ calculations, based on OECD Productivity Database June 2018

10If the second reverse regression with R&D as the dependent variable is run despite its

theoretical implausibility, the implied upper bound to the coefficient is even higher, around

41%
11This unusually high share concerns Ireland in the year 2015 that saw a massive transfer

of R&D assets into the country, leading to a leap in GDP growth and a singularly large cost

share of R&D
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Ugur et al (2016) conduct a meta-data analysis of 773 elasticity estimates

of R&D capital on output at the firm level and 135 elasticity estimates at the

industry level in OECD countries. Their median estimate ranges from 0.008

to 0.313 for elasticities at the industry level. Our own estimates appear to be

well within this range, considering in particular that the authors also find that

elasticity estimates tend to be higher when R&D capital is constructed with the

perpetual inventory method and when output is measured as value added which

is the case in our data set.

With the help of equation (11) we can carry out another test for significant

differences between estimated cost elasticities and those derived from the unre-

stricted model. We first express equation (11) in discrete time, and then assume

that both restricted and unrestricted cost elasticities are constant, along with

the assumption that technical change again follows a simple stochastic process

∆πt = αc0 + µt
c:

MFP t = ∆lnQt −∆lnZ∗t

= ε∗[wRSR/C
∗ − wRR/C

∗]∆lnRt + (ε∗ − 1)∆lnZ∗t + ∆πt

MFP t = αc0 + αc1∆lnRt + αc2∆lnZ∗t + µt
c. (18)

If restricted and unrestricted cost elasticities of R&D are constant and signif-

icantly different from each other, the coefficient αc1 = ε∗(wRSR/C
∗−wRR/C

∗)

should be significantly different from zero. A similar specification has been used

to test whether output elasticities of knowledge-based capital exceed its factor

shares (Roth and Thum 2013, Niebel et al. 2013 and Haines et al., 2017) and,

in a somewhat different context, as an estimate for spillovers from ICT and

intangibles (Stiroh 2002, Corrado et al. 2014). Estimation of (18) produces

insignificant results for αc1 and the same holds for the reverse regression.

In light of these outcomes and various other advantages of using uncon-

strained index numbers – full variability across countries and years, repro-

ducibility and greater ease of applicability in regular statistical production –

we conclude that there is no strong reason to prefer the econometric approach

over the index number approach. In what follows we shall therefore rely on an

unrestricted cost function as set out earlier.
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3.2 Scale elasticity

We next turn to the estimation of returns to scale. Our workhorse is the growth

accounting equation (15) that presents the growth rate of output as a function

of the growth rate of combined inputs and technical change, augmented by

long-run returns to scale. Transformed into discrete time the unrestricted cost

function in equation (15) reads as follows:

∆lnZ∗t =
1

ε∗
∆lnQt −∆πt,

∆lnQt = ε∗
(
∆lnZ∗t + ∆πt

)
; (19)

where ∆lnZ∗t ≡ 0.5
(

Ct

C∗t + Ct−1

C∗t−1

)
∆lnXt + 0.5

(
wt

RRt

C∗t +
wt−1

R Rt−1

C∗t−1

)
∆lnRt

is the cost-share weighted Törnqvist index of inputs. We have again specified

both the direct and the reverse form of the growth accounting equation as

the same points about errors in the variables apply that were discussed above.

19 sets up the estimation where productivity ∆πt is again taken to follow a

simple stochastic form with a constant expected value and randomly distributed

variations around it: ∆πt = αd0 + µdt.

∆lnZ∗t = αd0 + αd1∆lnQt − µt
d

∆lnQt = αe0 + αe1∆lnZ∗t + µt
e. (20)

Our baseline results are the direct and the reverse OLS estimate of (20).

For each direct and reverse estimate we add country-specific fixed effects and

time-specific fixed effects, first separately and then combined. Two types of

time effects are tested, one with dummies for all years (bar one), the other with

dummies for the crisis years 2008 and 2009 only. Overall, we end up with 12

estimates for long-run returns to scale. The corresponding evaluations of ε∗

range from around 0.8 to around 1.6. with an unweighted mean of 1.19. With

(classical) measurement errors likely present in all variables, the arguments de-

veloped earlier apply again, and suggest that the set of direct estimates around

the first expression in (20) will produce estimates of ε∗ = 1/αd1 that are down-

ward biased whereas reverse estimates around the second expression in (20) will

produce estimates of αe1 = ε∗ that are upward biased. As the true coefficient

will lie in between each pair of estimates, we take as point estimate – and best
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guess - for ε∗ the geometric average of the various results which corresponds to

ε∗ = 1.2.

This is in line with related research. For instance, Diewert and Fox (2008)

find a scale elasticity of between 1.2 and 1.5 for U.S manufacturing industry.

Basu and Fernald (1997) produce evidence of scale elasticities of between 1.29

and 1.46 for a comparable aggregate, value-added based measure for the private

sector of the US economy.

3.3 Productivity, demand and market size

With an estimate for ε∗ at hand it is now possible to implement (19) empirically

and de-compose MFP growth into an element that reflects returns to scale,

(1 − 1/ε∗)∆lnQt, and into an element of ‘residual’ productivity growth, ∆πt
S .

The qualification ‘residual’ is important because there are almost certainly other

forces than pure technical change that affect this measure.

MFP t = ∆Qt −∆Z∗t = (1− 1/ε∗)∆lnQt + ∆πt
S . (21)

Figure (2) exhibits results of this decomposition for 20 OECD countries over

the period 1985-2016 based on our preferred average value ε∗ = 1.2. Despite

differences between countries, it is apparent that both effects are important,

although a look at the annual data shows much greater volatility of the residual

MFP component. Overall, and across all countries and periods, the scale effect

and the residual MFP effect are approximately equally strong determinants of

MFP growth. It is also apparent from Figure 2 that much of the cross-country

variability comes from the residual MFP effect. Scale effects are more similar

across countries (although this is partly a consequence of the country-invariant

scale parameter) than residual MFP effects. This could imply that country

characteristics such as differences in policies and institutions matter more for

residual MFP than for scale effects.

A scale effect of some magnitude has policy-relevant consequences.

• One is the implied effect of demand on productivity – a causality that runs

counter to the more standard supply-side interpretation where technology

and efficiency improvements affect output. On the one hand, this con-

cerns longer-term demand effects: for instance, rising income inequality
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may have a dampening effect on demand and consequently on produc-

tivity if the average propensity to consume declines (Summers 2015) or

if lower income households desire to accumulate precautionary savings in

response to the higher income risk associated with persistent inequality

(Auclert and Rognlie 2018). Further, some of the procyclical nature of

productivity growth can be explained when demand affects productivity,

as has been suggested by Hall (1988) and Basu and Fernald (1997). We

do find, however, that ∆πt
S remains a series of high variance.

• A second and related policy-relevant conclusion is that market size matters

for MFP. With markets expanding globally, returns to scale come into

force and reduce marginal costs. This is one of the positive effects of

expanding trade and vice versa, shrinking market size will negatively affect

productivity growth.

• A third consequence is that increasing returns to scale imply the existence

of mark-ups over marginal costs and therefore some monopolistic elements.

Whether or not these monopolistic elements give rise to ‘pure’ mark-ups

above and beyond what is needed to cover average costs is an important

question for competition policy.

Figure 2: Scale effects and residual MFP

Annual average percentage changes, 1985-2015*

*Portugal, Spain and Sweden: 2015.

Source: authors’ calculations, based on OECD Productivity Database June 2018
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Turning to mark-ups rates over marginal costs, these are measured with the

help of equation (19):

1 +m∗t = ε∗

(
1− M∗t

P t
QQ

t

)−1

= ε∗
(

1 +
M∗t

C∗t

)
. (22)

To measure 1+m∗t, we use the constant average value ε∗ = 1.2 and the time-

and country-varying measure of ‘residual’ profit rates M∗t/(P t
QQ

t) or ‘residual’

mark-up rates M∗t/C∗t over marginal costs. M∗t is the difference between

labour compensation, user costs of capital and the nominal value of output.

The latter is measured at basic prices, so any (other) taxes and subsidies on

production are excluded from the residual mark-up M∗t. In our sample, the

average mark-up factor 1 +m∗t, across all countries and years is around 1.3 or

a 30% addition to marginal costs. This is broadly consistent with early work

by Oliveira-Martins et al. (1996), and Christopoulou and Vermeulen (2012),

although the authors assume constant returns and consider the private sector

rather the total economy. Diewert and Fox (2008) derive mark-ups between 1.4

and 1.7 for U.S. manufacturing, Devereux et al. (1996) review the literature

and estimate that mark-ups of up to 1.5 constitute a plausible value for use in

modelling. De Loecker and Warzynski (2012), in a firm-level study of Slovenian

manufacturing firms, obtain mark-ups in the range of 1.17–1.28. As in other

studies, mark-up levels across countries vary significantly, as can be seen from

Figure 3. This reflects a host of factors, including the degree of competition and

regulation, differences in the presence and in the returns to other assets such

as natural resources or intangibles that have not been explicitly captured; and

measurement issues.

It should be recalled here that the level of residual mark-ups M∗t also reflects

assumptions about the longer-run real rate of return to capital that have entered

the computation of user costs (Annex A). Indeed, the standard way to proceed

(Jorgenson 1985, Jorgenson and Landefeld 2004) is letting the rate of return to

capital that enters user cost measures adjust so that M∗t vanishes (‘endogenous

rates of return’) and the value of output equals exactly total costs. Absent

M∗t, the mark-up rate over marginal costs equals exactly the degree of returns

to scale as can be seen from (22). In this case, time-invariant returns to scale ε∗
would imply time-invariant mark-ups 1 +m∗ and all variation in profits would

show up as variations in the price of capital services.
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Karabarbounis and Neiman (2018) explore several hypotheses about the

sources of ‘factorless income’, which corresponds to our measure of economic

profits, M∗t. Their favoured explanation is one whereby “simple measures of the

rental rate of capital might deviate from the rate that firms face when making

their investment decisions” (p55). In other words, they hypothesise that the

most plausible explanation for the existence of M*t is that remuneration of

measured capital is understated. This could, for instance reflect risk premia, a

conclusion in Caballero et al (2017).

Figure 4 shows how mark-up rates over marginal costs develop over time,

measured as 1.2[1 + M∗t/C∗t]. The same pattern holds for residual mark-up

rates 1 +M∗t/C∗t but scaled down by the (constant) degree of returns to scale

1/ε∗ = 0.83. One notes that with a time-invariant ε∗, all changes in overall mark-

up rates (1 +m∗t) are triggered by changes in residual mark-up rates M∗t/Ct.

If returns to scale were allowed to vary over time, the split of overall mark-

ups over marginal costs into scale effects and residual profit effects might turn

out differently. Over the period 1985-2016, overall mark-ups over marginal costs

increased on average and in 16 of the 20 countries considered which corroborates

other findings in the literature. Calligaris et al. (2018) and Andrews et al.

(2016), albeit with an entirely different firm-level dataset also observe upward

trending average mark-ups in OECD countries, mostly driven by firms in market

services sectors. Analysis of causes of this secular increase in mark-ups over

marginal costs is beyond the scope of this paper but several possibilities suggest

themselves:

• Rising returns to produced assets, as a reflection of rising risk premia.

Karabarbounis and Neiman (2018) explore several hypotheses about the

sources of ‘factorless income’, which corresponds to our measure of eco-

nomic profits, M*t. Their favoured explanation is one whereby “simple

measures of the rental rate of capital might deviate from the rate that

firms face when making their investment decisions”. In other words, they

hypothesise that the most plausible explanation for the existence of M∗t

is that remuneration of measured capital is understated. This could, for

instance reflect risk premia, a conclusion in Caballero et al (2017). If ris-

ing risk premia are the issue, the corresponding residual profits should be

reallocated as factor income to the relevant assets. From an analytical and

policy perspective, identifying the source of rising risk premia associated
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Figure 3: Mark-ups over marginal costs - by country

*Portugal, Spain and Sweden: 2015

Source: authors’ calculations, based on OECD Productivity Database June 2018

with non-financial investment would be an important subject of future

research.

• Monopoly rents: rising residual profits are certainly consistent with situ-

ations where the digital economy and associated network effects lead to

‘winner-takes-most’ outcomes and reduced competition. This is the ar-

gument pursued in Calligaris et al. (2018), who show that average firm

mark-ups are higher in more digital-intensive sectors, even after control-

ling for various factors. A particularly strong hike in residual mark-ups is

measured for Ireland, possibly reflecting supra-normal returns to intellec-

tual property assets.

• Rising mark-ups over marginal costs may also be a reflection of the rising

importance or rising returns to those assets that have not been explicitly

recognised in the present computations. When of the intangible kind, these

assets include human capital, organisational capital, or marketing assets

as investigated by Corrado et al. (2005), OECD (2013) or Goodridge et al

(2016). When of the tangible kind, these assets include in particular land

21



whose real price (and real return) has registered an upward trend over the

past decades in many OECD countries.

Figure 4: Mark-ups over marginal costs - average across countries

*Unweighted average. Portugal, Spain and Sweden: 2015

Source: authors’ calculations, based on OECD Productivity Database June 2018

4 Conclusions

With the implementation of the 2008 System of National Accounts, R&D cap-

ital stock measures are now widely available in OECD countries. While it is

natural to include R&D capital services into the measurement of productivity,

R&D assets are also somewhat special: conceptually, they shape production

rather than provide a specific type of service, they are replicable and easily

transferable and their production often entails long gestation and sunk costs;

and measurement of the value and prices of R&D investment and R&D assets

has to rely on more assumptions than is normally the case for other assets. We

investigate whether the usual assumption of period-to-period cost-minimising

choices of capital inputs is warranted for R&D inputs and conclude that on the

whole the traditional index number method cannot be rejected.

We also test for non-constant returns to scale and find econometric evidence

for moderately increasing returns at the aggregate economy level, much in line

22



with the available literature. This permits decomposing MFP growth rates

into a component that is triggered by returns to scale and into a component

of ‘pure’ or ‘residual’ technical change. Across the 20 countries examined and

over three decades, the two components are approximately equally important.

A dependence of MFP on the level of activity both helps explaining cyclical

patterns of MFP growth and points to the importance of long-term demand,

market size and international trade as supporting factors of productivity.

The dual picture of imperfect competition and increasing returns to scale is

mark-ups over marginal costs. We find that mark-up rates have trended upwards

in nearly all countries investigated. As our measure of increasing returns to

scale is time-invariant, this reflects a rise in residual profits, above and beyond

what is needed to cover average costs. Such a picture This chimes well with

effects associated with globalisation and digitalisation where some markets may

have become less competitive. Extra profits may also reflect returns to assets

not measured in our set of inputs, including intangibles other than R&D, and

tangibles such as land and natural resources. Future research will have to explore

which of these explanations is most accurate.
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Annex A Measurement and Data Sources

R&D assets

The measurement of capital requires a number of methodological choices that,

more often than not, suffer from weak empirical support and require more or

less well-founded assumptions by statisticians. Examples include the choice of

service lives (or depreciation rates), retirement distributions and the form of

the age-efficiency function (OECD 2009). Some of these choices matter little

for the final productivity measure. But with large and lumpy shifts of the asset

base as observed recently with intellectual property products, they may become

important.

We start with a representation of the production of the IP asset itself. In line

with the 2008 SNA, R&D is an investment activity that adds to final demand

and GDP. Investment may happen as a result of own-account production in the

functional unit of a larger enterprise or in a separate corporation. Statistical

practice now introduces several simplifications to deal with missing information

in regards to R&D.

Absent market observations on the value of own-account research, a first

constraint is that the gross value of research output at current prices has to be

measured by summing costs – compensation of employees, user costs of capital

employed in R&D and (other) taxes on production. Current price value-added

(gross output net of intermediate inputs) is then measured by summing the

value of primary inputs labour and capital. Thus, the value-added created in

R&D firms or production units in period t equals

P t
RI

t
R =

∑
i

wt
XiX

t
Ri. (A.1)

In (A.1), ItR is the volume of R&D output (in value-added terms) in period

t and XR ≡ [XR1, XR2, ...] captures volumes of labour and capital services

purchased at prices wX ≡ [wX1, wX2, ...]. Although we specify price and volume

components P t
R and ItR for R&D output, these are not in general separately

observable. A second assumption is necessary here, namely that the volume

change of research output is measured by the volume change of its inputs. By

implication, productivity growth in R&D production is zero and the price index

of research output moves in tandem with the price index of research inputs 12 .

12The implied production function is IR = fR(XR). Note that this reflects a statistical
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Absence of an independent measure of the price PR and its movements over time

also implies that the usual assumption that PR is the equilibrium price generated

on the market for capital goods does not necessarily hold. Such an equilibrium

price connects the (marginal) cost of producing a unit of R&D investment with

the discounted stream of future revenues that is expected from using R&D in

production. There is no guarantee that the input-based price that is imputed by

statisticians reflects such an equilibrium price. However, a valuation by private

asset owners may be observable when assets are sold or transferred. As will be

seen below, this raises an issue of consistency of valuation of capital measures.

A third element of statistical practice - indeed, needed for most types of

assets and not only for R&D - is that measures of stocks are constructed by

cumulating measures of flows of investment volumes over time after correcting

for depreciation and retirement:

P t
RR

t = λ0P
t
RI

t
R + λ1P

t
RI

t−1
R + λ2P

t
RI

t−2
R + ... (A.2)

The sequence 1 ≥ λ0 ≥ λ1 ≥ λN > 0 captures the depreciation, retire-

ment and obsolescence patterns for a service life of N periods. One issue is

the choice of service lives N and the implied rates of depreciation. We shall

devote little space to this question here although we note that depreciation of

IP assets reflects obsolescence or patent expiration rather than physical wear-

and-tear. This complicates the estimation of depreciation rates. Diewert and

Huang (2011) and Li (2012) show how N and the sequence of λ can be derived.

In (A.2), the sequence of
[
P t
RI

t−i
R

]
was somewhat loosely referred to as in-

vestment flows. This requires some precision. Capital formation does not only

consist of newly produced investment products but may also include existing or

second-hand assets that are being acquired. Another, less frequent, source of

additions to capital is the ‘appearance’ of assets. This may arise with discover-

ies of natural resources or with the transfer of an asset within a (multinational)

corporation. Both acquired existing assets and appearing assets need to be

added to a country’s or industry’s capital stock if they generate capital services.

Thus, for any period t, the addition to the capital stock is λi(P
t
RI

t−i
R +P t

RI
t−i
RA )

constraint rather than economic reasoning. If independent volume measures or deflators for

research output are available, the zero productivity growth assumption is not needed as the

growth rate of IR can be estimated independently from the volume of inputs. In this case,

the production function would read as IR = fR1(XR, t).
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where P t
RI

t−i
RA is the volume of the appearing stock It−i

RA , valued in prices P t
R

of year t. If the source of information for the appearing asset is a company

balance sheet, this creates a potential inconsistency as companies may have

have applied a different valuation from P t
R, call it P t

RA. Unless a revaluation is

undertaken, there is a danger of inconsistency if P t
RAI

t−i
RA rather than P t

RI
t−i
RA

enters the computation of the capital stock. Consistent revaluation requires also

that information is available about the remaining service life of the appearing

asset. Such a revaluation and adjustment for the age of the appearing asset is

not always possible absent relevant information. The analyst faces a trade-off

between an inconsistency in valuation as well as an inaccurate depreciation pro-

file and not accounting for the appearing (or disappearing) asset at all. It would

seem that the latter likely constitutes a worse choice than the former.

There is also the selection of the depreciation pattern. A common choice is a

geometric pattern where a cohort of assets loses value and productive capacity at

a constant rate. Another, widely used sequence is the hyperbolic age-efficiency

profile for λ : λi = N−i
N−bi ; i = 0, 1, 2, ...N ; 0 < b ≤ 1 implying that the service

flows from assets decline little at first and more rapidly towards the end of the

service life. An extreme case of the hyperbolic profile arises with b = 1 for

i = 1, 2, ...N so that λ = 1 throughout the asset’s service life and dropping to

zero thereafter (‘one-hoss shay’). In the case of knowledge assets it stands to

reason that service flows follow a hyperbolic or one-hoss shay profile: absent

any wear and tear, there is a non-diminished flow of services during the asset’s

service life coupled with a rapid decline at the end of the service life. However,

things may be different if one reasons in terms of cohort of assets rather than

a single asset. For whole cohorts, it is necessary to introduce a retirement

distribution unless it is assumed that N is identical for all individual assets

within the same cohort. The sequence of service flows for an entire cohort may

look quite different from that for an individual asset (Hulten 1990).

The treatment of appearing assets that are lumpy and large requires also

careful attention to infra-annual patterns (assuming that observations are an-

nual) so that large additions to the capital stock appear when they actually pro-

vide capital services and affect output. Note that in line with national accounts

conventions, investment flows or appearance of assets (ItR, I
t
RA) are measured

in terms of average values of the period. Whether they affect productive stocks

Rt and associated service flows at the beginning, in the middle or at the end of
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period t does not normally matter but may become important when ItR or ItRA

are large, discrete flows.

In summary, then, while the principles of measuring R&D capital are aligned

with other types of assets (OECD 2010), there are some major complications

that are specific to R&D (and other knowledge-based assets):

• It is often difficult to obtain independent observations on the value and

price of R&D investment, which requires applying an input-based ap-

proach. There is also greater uncertainty about the accuracy of rates of

depreciation – or obsolescence – than with many other fixed assets.

• As intellectual property assets can easily be transferred across borders,

there is the possibility of large appearances of such assets on countries’

balance sheets. These additions to the capital stock should be recognised

in the measurement of capital services although they raise further issues

of valuation and estimation of their remaining service lives.

The OECD Productivity Database uses the perpetual inventory method as

in (A.2) to compute stocks of R&D capital. The age-efficiency pattern is hy-

perbolic with a service life of 10 years and the retirement function follows a

normal distribution with a standard deviation of 25% of the average service life.

Investment data on R&D is augmented by the value of appearing assets where

this plays a sizable role, for example in Ireland. National deflators for R&D

investment are applied which in general reflect price changes of inputs in R&D

activity.

Flows of R&D investment expenditure are sourced from countries’ national

accounts as compiled in the OECD’s Annual National Accounts database. These

are broadly consistent with data on R&D performance as compiled in line with

the OECD Frascati Manual (2015) although differences arise in particular where

R&D assets are traded or transferred internationally. As Galindo-Rueda et

al (2018) point out “Notwithstanding practical differences across R&D perfor-

mance measures and SNA IPP investment statistics [. . . ], the globalisation of

R&D appears to be, as expected, a first order factor underpinning observed

differences between Frascati-based statistics on R&D performance and the SNA

view of how much countries invest in R&D. In most countries, the value of R&D

assets capitalised annually has been fairly similar to the value of domestic R&D

performance, with the ratio of R&D investment to performance sitting in a band
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between roughly 80% and 110% in many cases and being relatively stable over

time. However, divergence has been more marked in countries characterised by

large international R&D related flows. In Ireland, R&D investment has grown

much more quickly than GERD since around 1997. This difference is driven

by large imports of R&D assets [. . . ] By contrast, in Israel R&D investment

is estimated to be less than half of R&D performance in 2014, having declined

from nearer 100% in the 1990s. ” For purposes of capturing capital input in

productivity measurement, the R&D stocks adjusted for imports and exports

would appear to be the preferred concept and have been used in the work at

hand.

4.1 Capital services

More generally, in the OECD Productivity Database capital services provided

to production by each type of capital good are estimated by the rate of change of

their productive capital stocks. Estimates of productive capital stock are com-

puted using the perpetual inventory method on the assumption that the same

service lives and retirement functions are applicable for any given asset irrespec-

tive of the country. Productive capital stocks and the respective flows of capital

services are computed separately for eight non-residential fixed assets. The fol-

lowing average service lives are currently assumed for the different assets: 7 years

for computer hardware, 15 years for telecommunications equipment, transport

equipment, and other machinery and equipment and weapons systems, 40 years

for non-residential construction, 3 years for computer software and databases,

10 years for R&D and 7 years for other intellectual property products. The

approach further uses harmonised deflators for computer hardware, telecommu-

nications equipment and computer software and databases, for all countries, to

sort out comparability problems that exist in national practices for deflation for

this group of assets (Schreyer, 2002; Colecchia and Schreyer, 2002). The over-

all volume measure of capital services is computed with a Törnqvist index by

aggregating the volume change of capital services of all individual assets using

asset specific user cost shares as weights.

For R&D assets, the value of capital services is measured as
∑

s u
t
0R

t
s where

ut0 is the user cost per unit of a new asset and Rt
s = λsI

t−s
R is the volume of

the s-year old asset expressed in ‘new equivalent’ units. User costs are defined

as ut0 = P t−1
R (rt + dt0–ζt + dt0ζ

t) where P t−1
R is the purchase price of an asset
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at the end of period t − 1, dt0 is the rate of depreciation for a new asset, ζt

is the rate of price change of a new asset, dt0ζ
t is an interaction term and rt

is the net rate of return. We obtain a value for the expected nominal rate of

return rt by first computing a long-run average of observed real interest rates

in countries (nominal financial market interest rates deflated with a consumer

price index). The so-obtained real interest rate is then reflated with a smoothed

consumer price index. ζt is measured as a smoothed series of nominal asset

price changes. Similar procedures are applied to other types of assets, each

with an asset-specific depreciation and asset-price measure. Further details can

be found in Schreyer et al (2003) and OECD (2009).

4.2 Labour inputs

The preferred measure of labour input in the OECD Productivity Database,

and hence the labour input measure used in this paper, is the total number of

hours worked by all persons engaged in production (i.e. employees plus self-

employed). While the preferred source for total hours worked in the database is

countries’ national accounts, in the case of Japan and New Zealand, for which

national accounts data on hours worked are not available at the time of writing

this paper, other sources have been used, i.e. data from labour force surveys as

published in the OECD Employment and Labour Market Statistics.
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Annex B Tables by Country

Available at http://www.oecd.org/sdd/Annex-B-tables-by-country.xlsx
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