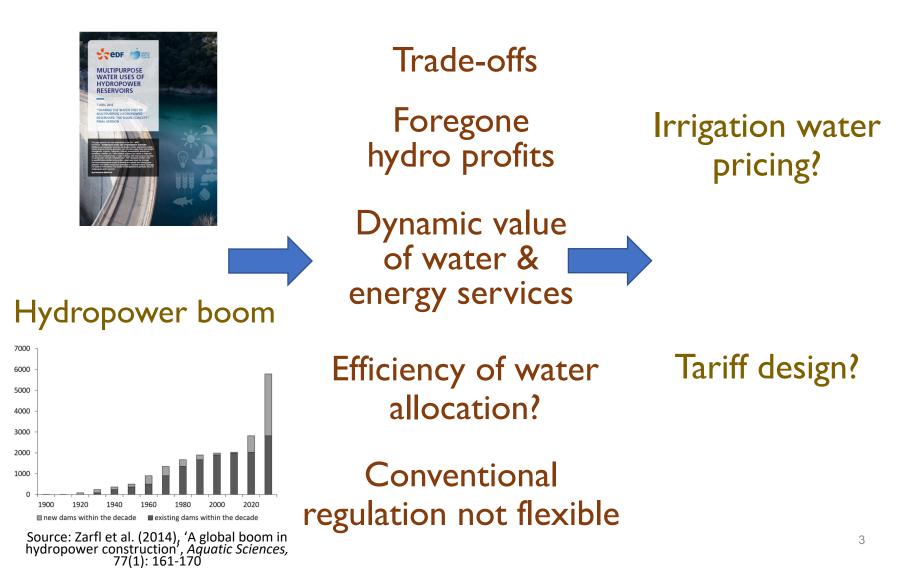
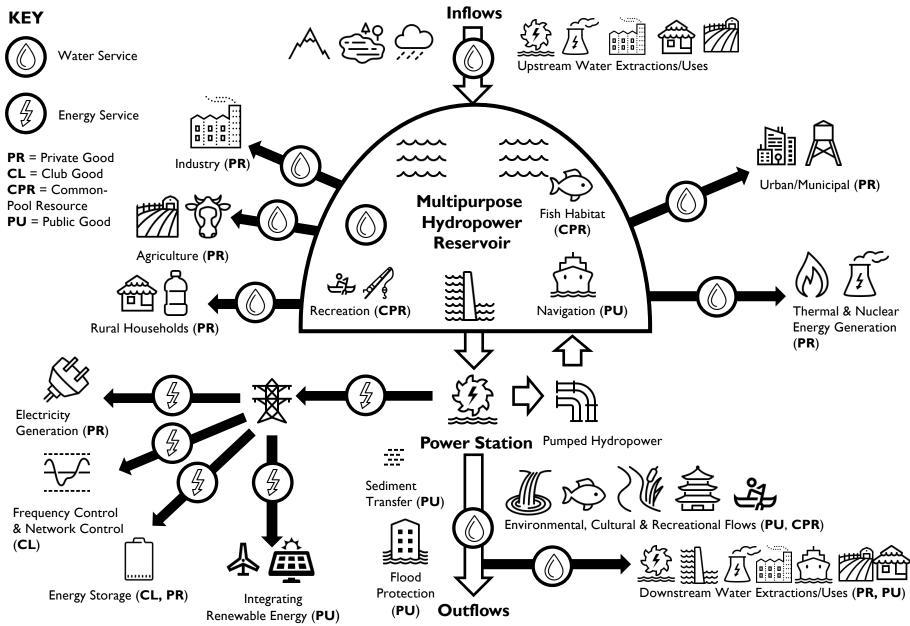


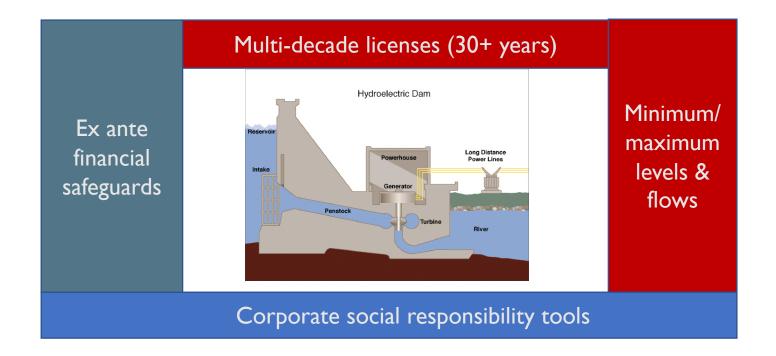
Integrating the Value of Reservoir Storage into Water Tariff Design: Application to Multipurpose Hydropower Regulation

6 December 2019 | Economic Measurement Group Workshop

Paul Wyrwoll, Centre for Climate and Energy Policy Crawford School of Public Policy, Australian National University paul.wyrwoll@anu.edu.au


Outline


- Context
- Model & research question/objectives


- Results
- Discussion

Multipurpose Hydropower Reservoir Regulation Under Variable Rainfall & Electricity Prices

Conventional hydropower regulation

But efficient water reallocation requires dynamic regulation not just operating boundaries & information

Theoretical approach & contribution

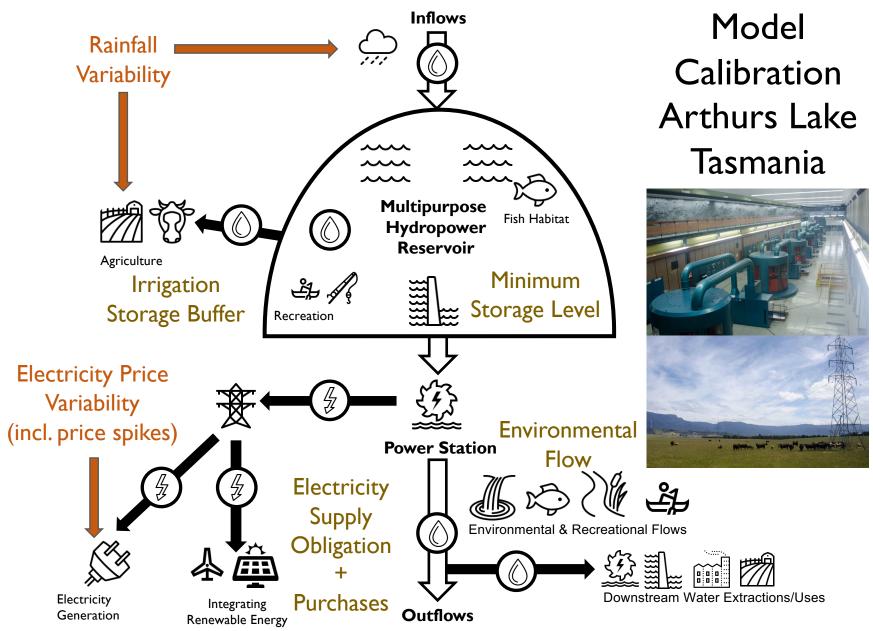
- Opportunity costs are fundamental to water resources governance
- Marginal User Cost (MUC):
 - 'foregone benefit from not having an additional unit of water storage available in the future'
- MUC can be estimated (e.g. Moncur & Pollack 1988)

Theoretical approach & contribution

- Water tariffs and (volumetric) water prices
- Opportunity costs rarely incorporated into water tariffs:
 - Calculation not straightforward, not transparent for water consumers
 - Price spikes with expected water scarcity
 - & \uparrow cost of inputs
- Other regulatory objectives generally prioritised over efficiency in tariff design

Theoretical approach & contribution

- Many studies on water tariff design
 - e.g. Turvey (1976); Feldman (1972); Renzetti (1992); Olmstead & Stavins (2009)
- Pulido-Velazquez et al. (2013) use hydro-economic simulations to calculate user cost for multi-reservoir system
 - Raw values processed into storage-dependent step function
 - Followed by Macian-Sorribes et al. (2015) and Lopez-Nicolas (2018)


Theory & Literature

- Khadem et al. (2018) estimate economic value of interannual storage
- Chu and Grafton (2018) derive 'risk-adjusted user cost' for water pricing in the ACT
 - Optimal timing of supply-side investment
 - Avoidance of welfare-reducing water restrictions
- All previous studies use some form of mathematical programming to calculate MUC
- None consider pricing water services provision from a hydropower reservoir

Contributions & Research Question

•Contributions:

- I. First paper on water tariff design for regulating multipurpose hydropower reservoirs
- 2. 'Rule of thumb' (heuristic) to estimate marginal user cost without mathematical programming
- •Research question:
 - What is the optimal design of irrigation water tariffs for hydropower governance in the presence of electricity price spikes and electricity supply obligations?

Price stability (PS) tariff vs marginal user cost (MUC) tariff?

- PS is retrospective average
- MUC is estimated value of future benefits foregone by current extractions

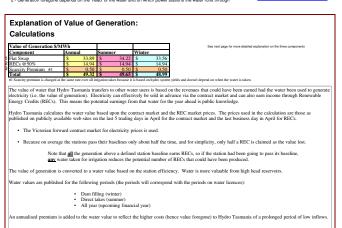

What are costs of price stability controls?

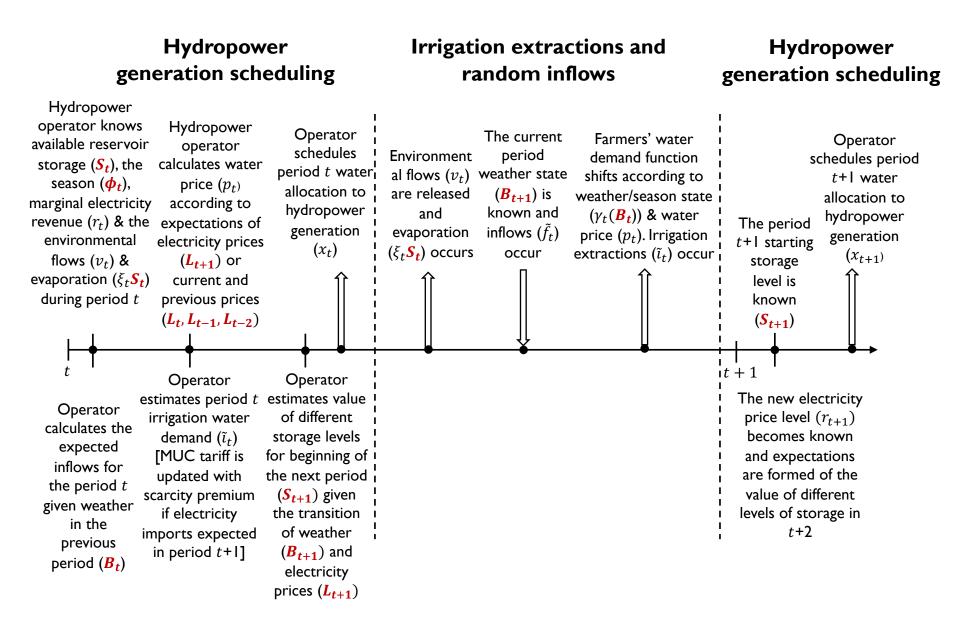
- Foregone hydro profits
- Foregone electricity
- Electricity purchases
- Water allocation efficiency

Objective function:

- Hydropower profit maximization
- Control is hydro extractions
- Stochastic dynamic programming
- Aggregate results 1000 simulations (basic model + sensitivity analysis)

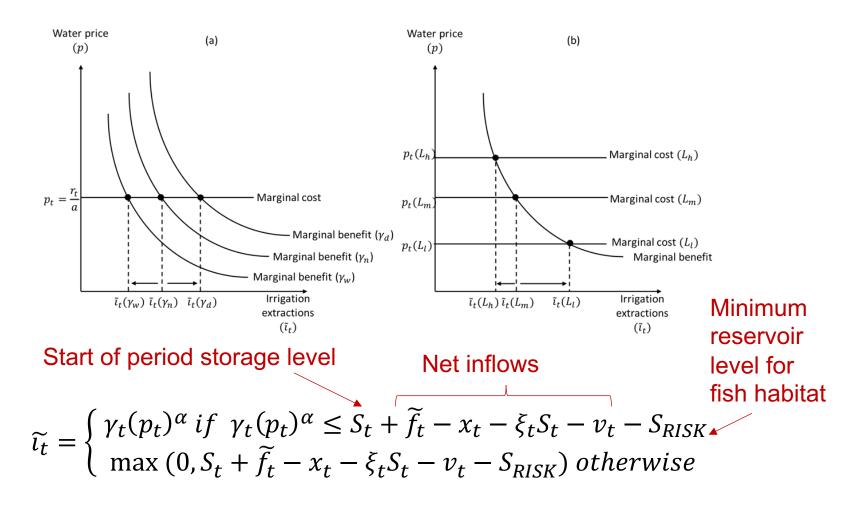
Hydro Tasmania Water Price for water takes for the 2014/15 season




Water Price = Value of Generation x Generation Foregone

Value of Generation = Flat Swap Contract price + 1/2 REC price + Water Scarcity Premium^{A1}

Generation Foregone = MW hours per Mega Litre^{^2}



Stochastic variables

Markov processes for stochastic weather (B_t) and stochastic electricity prices (L_t)

Probability of Dry, Normal, and Wet Weather in the forthcoming Winter Season					Probability of Dry, Normal, and Wet Weather in the forthcoming Summer Season				
$(\phi_t = 2)$				$(\phi_t = 1)$					
\tilde{C}_t	$B_t = d$	$B_t = n$	$B_t = d$		\tilde{C}_t	$B_t = d$	$B_t = n$	$B_t = w$	
d	0.6	0.3	0.6		d	0.5	0.2	0.3	
n	0.3	0.4	0.3		n	0.4	0.6	0.4	
W	0.1	0.3	0.1		W	0.1	0.2	0.3	

Irrigation water demand, price & weather

Excess irrigation demand can occur

Water tariffs

Standard Volumetric (SV) Tariff

Marginal revenue from hydropower generation in period t = r_t $p_t = \frac{1}{a} \times (g_t(L_t) + \theta^c \bar{c})$ Production parameter of water Renewable energy certificate revenue

Price Stability (PS) Tariff (3-period average)

Fixed probability water
scarcity premium

$$p_{t} = \frac{1}{a} \times \left(\frac{(1 + \omega(\psi - 1))(g_{t}(L_{t}) + g_{t}(K_{t}) + g_{t}(J_{t}))}{3} + \theta^{c}\bar{c} \right)$$
Electricity price
2 periods ago

Marginal User Cost (MUC) Tariff

- I. Assume an additional unit of water storage generates hydropower in t+I
- 2. Estimate expected marginal hydropower revenue in t+1 and calculate expected volumetric water price
- 3. Calculate expected storage at beginning of t+1
 - Assume period t hydropower generation meets electricity supply obligation
 - Estimate period t expected inflows from t-I weather
 - Estimate expected irrigation extractions from Step (2) price

Marginal User Cost (MUC) Tariff

- If expected storage at beginning of period t+1 is less than water volume equating to minimum electricity supply obligation:
 - Augment volumetric price in Step (2) with premium reflecting higher cost of purchasing electricity

$$p_{t} = \begin{cases} \frac{1}{a} \times (E(g_{t+1}(L_{t})) + \theta^{c}\bar{c}) & \text{if } \frac{1}{a} \times (E(S_{t+1}|x_{t} = x(e_{MIN})) - S_{IRR}) \ge e_{MIN} \\ \frac{1}{a} \times ((\psi - 1) \times E(g_{t+1}(L_{t})) + \theta^{c}\bar{c}) & \text{if } \frac{1}{a} \times (E(S_{t+1}|x_{t} = x(e_{MIN})) - S_{IRR}) < e_{MIN} \\ \text{Water scarcity premium} \\ E(S_{t+1}|x_{t} = x(e_{MIN})) = S_{t} + E(\tilde{f}_{t}(B_{t}, \phi_{t})) - E(\tilde{\iota}_{t}(B_{t}, L_{t})) - \xi_{t}S_{t} - v_{t} \end{cases}$$

Profit functions (SV Tariff)

Hydropower

$$\pi_{t}^{H}(B_{t}, K_{t}, L_{t}, x_{t}) = \frac{1}{a} \times x_{t} \times r_{t}(L_{t}) - \psi g_{t}(L_{t}) \times \max(0, e_{MIN} - e_{t}(x_{t})) + i_{t-1}(B_{t}, K_{t}) \times p_{t-1}(K_{t})$$
Previous period's irrigation revenues

Irrigation

$$\pi_{t}^{I}(B_{t}, L_{t}, x_{t}) = \frac{\alpha}{\gamma_{t}(B_{t})^{\frac{1}{\alpha}}(\alpha + 1)} \left(\tilde{\iota}_{t}^{\frac{\alpha+1}{\alpha}}(B_{t}, L_{t}, x_{t}) - i_{CHOKE_{t}}^{\frac{\alpha+1}{\alpha}}(B_{t}) \right) + p_{CHOKE} \times i_{CHOKE_{t}}(B_{t}) + p_{t}(L_{t}) \times \tilde{\iota}_{t}(B_{t}, L_{t}, x_{t}) \right)$$

$$+ p_{CHOKE} \times i_{CHOKE_{t}}(B_{t}) + p_{t}(L_{t}) \times \tilde{\iota}_{t}(B_{t}, L_{t}, x_{t})$$
Current period's irrigation charges

19

Solving the model for optimal hydropower extractions

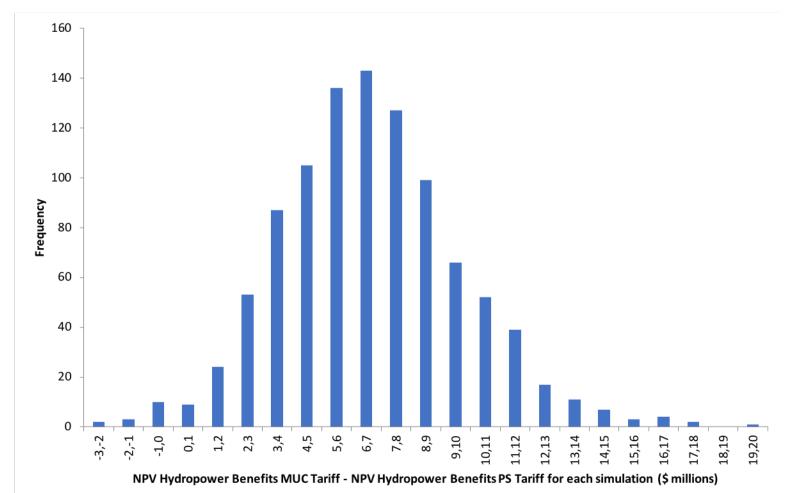
Bellman equation (SV Tariff)

$$V(S_t, \phi_t, B_t, K_t, L_t) = \max_{x_t} \left[\pi_t^H(S_t, \phi_t, B_t, K_t, L_t) + \frac{1}{1+\rho} EV(S_{t+1}, \phi_{t+1}, B_{t+1}, K_{t+1}, L_{t+1}) \right]$$

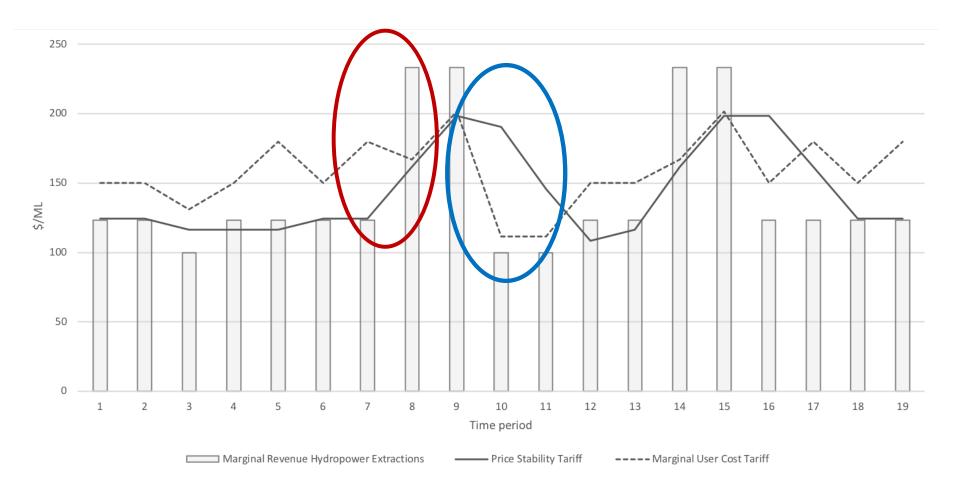
Stochastic Dynamic Programming

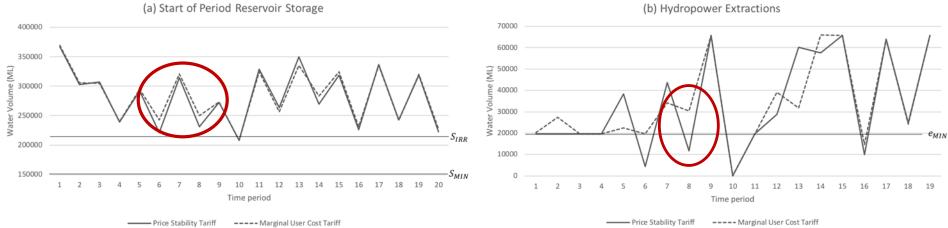
- Backward induction to calculate value of all coordinates in the state space
- Forward simulation with randomised timepath for stochastic weather and electricity prices

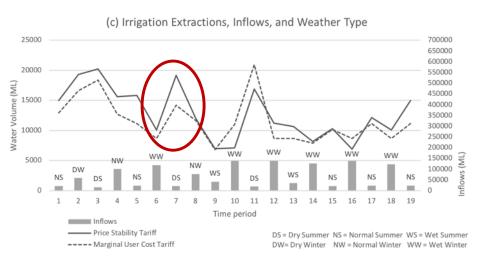
Aggregate results

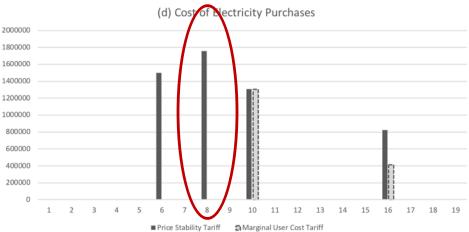

1000 simulations; 10 years (20 seasons)

Costs: 1 hydro profits 1 electricity generation ↑ electricity purchases 1 efficiency water allocation

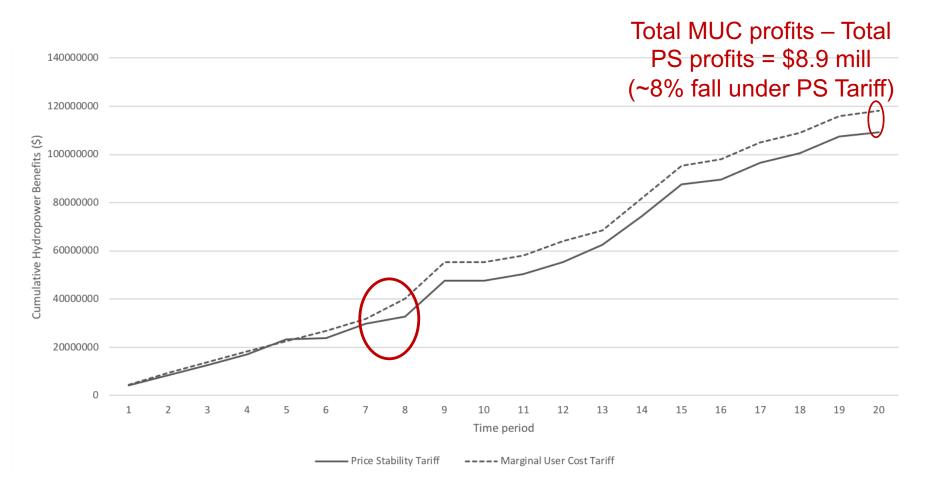

Subsidy: \(\) irrigation profits & extractions (PS Tariff)


]	Hydropower	Irrigation		Total		
Tariff	Average water extractions (St. dev.)	Average NPV benefits (St. dev.) \$ millions	Electricity generation GWh	Electricity purchases GWh	Average NPV of cost of electricity purchases \$ millions	Average water extractions (St. dev.)	Average NPV benefits (St. dev.) \$ millions	Average NPV benefits (St. dev.) \$ millions
Standard Volumetric	474.7 GL (72.4 GL)	\$83.3 (\$14.6)	900.4 (137.3)	215.5 (51.3)	\$12.9 (\$4.0)	266.8 GL	\$52.8 (\$4.0)	\$136.1 (\$11.6)
Price Stability	(72.4 GL) 481.0 GL (72.0 GL)	\$84.8 (\$14.9)	912.4 (136.6)	204.8 (51.6)	\$12.3 (\$4.0)	(23.3 GL) 257.7 GL (23.7 GL)	\$52.1 (\$4.0)	(\$11.6) \$136.9 (\$11.8)
Marginal User Cost	492.2 GL (67.4 GL)	\$91.5 (\$13.5)	933.6 (127.9)	172.9 (54.9)	\$10.5 (\$4.3)	236.4 GL (14.6 GL)	\$49.1 (\$2.7)	\$140.6 (\$11.5)


Histogram of foregone hydropower profits

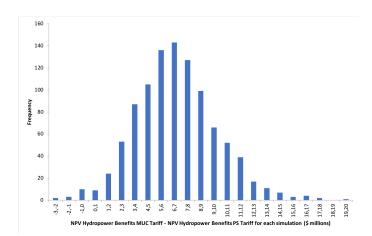


Water prices for an example simulation



(b) Hydropower Extractions

Time path of cumulative hydropower profits for example simulation



		Indirect irrigation subsidy					
Scenario	Foregone hydropower benefits \$ millions	Foregone hydroelectricity generation GWh	Cost of additional electricity purchases \$ millions	Reduced efficiency of water allocation \$ millions	Additional irrigation profits under PS Tariff \$ millions		
Primary model	\$6.6 (7.3%)	21.2 (2.3%)	\$1.8 (17.3%)	\$3.6 (2.6%)	\$3.0 (6.1%)		
Minimum electricity supp	ly obligation						
$e_{MIN} = 0$	\$0.50 (0.5%)	5.6 (0.6%)	Not Applicable	\$0.8 (0.1%)	\$0.6 (1.2%)		
$e_{MIN} = 10\%$ of e_{MAX}	\$4.1 (4.2%)	20.9 (2.1%)	\$0.7 (17.6%)	\$1.4 (1.0%)	\$2.7 (5.4%)		
$e_{MIN} = 50\%$ of e_{MAX}	\$11.6 (14.1%)	47.1 (13.6%)	\$3.2 (13.6%)	\$6.7 (5.2%)	\$4.9 (10.4%)		
$e_{MIN} = 70\%$ of e_{MAX}	\$9.3 (13.8%)	64.3 (6.2%)	\$4.0 (9.3%)	\$3.0 (2.7%)	\$6.2 (13.6%)		
Electricity purchase prem	ium						
$\psi = 1.16$	\$3.7 (4.1%)	1.0 (0.1%)	\$1.7 (15.2%)	\$1.3 (1.0%)	\$2.3 (4.7%)		
$\psi = 1.31$	\$4.8 (5.3%)	26.7 (2.9%)	\$1.8 (16.5%)	\$1.6 (1.1%)	\$3.3 (6.7%)		
High and medium electricity price level							
$L_h = $ \$67.71	\$2.50 (3.1%)	9.3 (1.0%)	\$1.5 (12.7%)	\$0.2 (0.2%)	\$2.7 (5.1%)		
$L_h = $ \$133.48	\$6.0 (5.8%)	31.0 (3.3%)	\$2.0 (19.6%)	\$2.5 (1.7%)	\$3.5 (7.5%)		
$L_m = $ \$67.71	\$3.4 (3.2%)	24.8 (2.4%)	\$1.0 (6.0%)	\$0.5 (0.4%)	\$2.9 (6.5%)		
	Water demand and irrigation storage buffer						
Doubled water demand	\$11.3 (12.3%)	77.0 (12.7%)	\$3.4 (16.8%)	\$2.8 (1.5%	\$8.5 (9.0%)		
$S_{IRR} = S_{RISK}$	\$2.6 (2.5%)	28.6 (2.66%)	\$0.3 (5.3%)	\$1.2 (0.8%)	\$1.4 (2.9%)		
Doubled water demand & $S_{IRR} = S_{RISK}$	\$3.1 (3.0%)	-7.7 (0.8%)	\$1.4 (9.4%)	\$2.3 (1.3%)	\$0.8 (1.0%)		
Price elasticity of water demand							
$\alpha = -0.5$	\$4.0 (4.4%)	24.7 (2.7%)	\$0.7 (5.5%)	\$0.7 (0.5%)	\$3.3 (4.9%)		
$\alpha = -0.7$	\$5.4 (5.9%)	-16.1 (1.7%)	\$3.1 (29.4%)	\$2.2 (1.5%)	\$3.0 (5.5%)		
$\alpha = -0.9$	\$4.8 (5.3%)	24.6 (2.6%)	\$2.0 (18.8%)	\$1.9 (1.4%)	\$2.9 (6.5%)		

		Indirect irrigation subsidy			
Scenario	Foregone hydropower benefits \$ millions	Foregone hydroelectricity generation GWh	Cost of additional electricity purchases \$ millions	Reduced efficiency of water allocation \$ millions	Additional irrigation profits under PS Tariff \$ millions
Primary model	\$6.6 (7.3%)	21.2 (2.3%)	\$1.8 (17.3%)	\$3.6 (2.6%)	\$3.0 (6.1%)
Minimum electricity supp	ly obligation				
$e_{MIN} = 0$	\$0.50 (0.5%)	5.6 (0.6%)	Not Applicable	\$0.8 (0.1%)	\$0.6 (1.2%)
$e_{MIN} = 10\%$ of e_{MAX}	\$4.1 (4.2%)	20.9 (2.1%)	\$0.7 (17.6%)	\$1.4 (1.0%)	\$2.7 (5.4%)
$e_{MIN} = 50\%$ of e_{MAX}	\$11.6 (14.1%)	47.1 (13.6%)	\$3.2 (13.6%)	\$6.7 (5.2%)	\$4.9 (10.4%)
<i>e_{MIN}</i> = 70 % of <i>e_{MAX}</i>	\$9.3 (13.8%)	64.3 (6.2%)	\$4.0 (9.3%)	\$3.0 (2.7%)	\$6.2 (13.6%)
Electricity purchase prem	ium				
$\psi = 1.16$	\$3.7 (4.1%)	1.0 (0.1%)	\$1.7 (15.2%)	\$1.3 (1.0%)	\$2.3 (4.7%)
$\psi = 1.31$	\$4.8 (5.3%)	26.7 (2.9%)	\$1.8 (16.5%)	\$1.6 (1.1%)	\$3.3 (6.7%)
High and medium electric					
$L_h = $ \$67.71	\$2.50 (3.1%)	9.3 (1.0%)	\$1.5 (12.7%)	\$0.2 (0.2%)	\$2.7 (5.1%)
$L_h = \$133.48$	\$6.0 (5.8%)	31.0 (3.3%)	\$2.0 (19.6%)	\$2.5 (1.7%)	\$3.5 (7.5%)
$L_m = $ \$67.71	\$3.4 (3.2%)	24.8 (2.4%)	\$1.0 (6.0%)	\$0.5 (0.4%)	\$2.9 (6.5%)
Water demand and irrigat	ion storage buffe	r			
Doubled water demand	\$11.3 (12.3%)	77.0 (12.7%)	\$3.4 (16.8%)	\$2.8 (1.5%)	\$8.5 (9.0%)
$S_{IRR} = S_{RISK}$	\$2.6 (2.5%)	28.6 (2.66%)	\$0.3 (5.3%)	\$1.2 (0.8%)	\$1.4 (2.9%)
Doubled water demand $\& S_{IRR} = S_{RISK}$	\$3.1 (3.0%)	-7.7 (0.8%)	\$1.4 (9.4%)	\$2.3 (1.3%)	\$0.8 (1.0%)
Price elasticity of water de					
$\alpha = -0.5$	\$4.0 (4.4%)	24.7 (2.7%)	\$0.7 (5.5%)	\$0.7 (0.5%)	\$3.3 (4.9%)
$\alpha = -0.7$	\$5.4 (5.9%)	-16.1 (1.7%)	\$3.1 (29.4%)	\$2.2 (1.5%)	\$3.0 (5.5%)
$\alpha = -0.9$	\$4.8 (5.3%)	24.6 (2.6%)	\$2.0 (18.8%)	\$1.9 (1.4%)	\$2.9 (6.5%)

Summary of key results:

- Price controls reduce hydro profits (7% to 14%) relative to marginal user cost tariff
- Price controls indirectly (& inefficiently) subsidise irrigation water provision
- Heuristic for estimating marginal user cost for extractions from multipurpose water storage

		Indirect irrigation subsidy			
Scenario	Foregone hydropower benefits \$ millions	Foregone hydroelectricity generation GWh	Cost of additional electricity purchases \$ millions	Reduced efficiency of water allocation \$ millions	Additional irrigation profits unde PS Tariff \$ millions
Primary model	\$6.6 (7.3%)	21.2 (2.3%)	\$1.8 (17.3%)	\$3.6 (2.6%)	\$3.0 (6.1%)
Minimum electricity suppl	ly obligation				
$e_{MIN} = 0$	\$0.50 (0.5%)	5.6 (0.6%)	Not Applicable	\$0.8 (0.1%)	\$0.6 (1.2%)
$e_{MIN} = 10\%$ of e_{MAX}	\$4.1 (4.2%)	20.9 (2.1%)	\$0.7 (17.6%)	\$1.4 (1.0%)	\$2.7 (5.4%)
$e_{MIN} = 50\%$ of e_{MAX}	\$11.6 (14.1%)	47.1 (13.6%)	\$3.2 (13.6%)	\$6.7 (5.2%)	\$4.9 (10.4%
$e_{MIN} = 70\%$ of e_{MAX}	\$9.3 (13.8%)	64.3 (6.2%)	\$4.0 (9.3%)	\$3.0 (2.7%)	\$6.2 (13.6%
Electricity purchase prem	ium				
$\psi = 1.16$	\$3.7 (4.1%)	1.0 (0.1%)	\$1.7 (15.2%)	\$1.3 (1.0%)	\$2.3 (4.7%)
$\psi = 1.31$	\$4.8 (5.3%)	26.7 (2.9%)	\$1.8 (16.5%)	\$1.6 (1.1%)	\$3.3 (6.7%)
High and medium electric	ity price level				
$L_h = $ \$67.71	\$2.50 (3.1%)	9.3 (1.0%)	\$1.5 (12.7%)	\$0.2 (0.2%)	\$2.7 (5.1%)
$L_h = 133.48	\$6.0 (5.8%)	31.0 (3.3%)	\$2.0 (19.6%)	\$2.5 (1.7%)	\$3.5 (7.5%)
Water demand and irrigat	ion storage buffe	r			
Doubled water demand	\$11.3 (12.3%)	77.0 (12.7%)	\$3.4 (16.8%)	\$2.8 (1.5%)	\$8.5 (9.0%)
$S_{IRR} = S_{RISK}$	\$2.6 (2.5%)	28.6 (2.66%)	\$0.3 (5.3%)	\$1.2 (0.8%)	\$1.4 (2.9%)
Doubled water demand & $S_{IRR} = S_{RISK}$	\$3.1 (3.0%)	-7.7 (0.8%)	\$1.4 (9.4%)	\$2.3 (1.3%)	\$0.8 (1.0%)
Price elasticity of water de	emand				28
$\alpha = -0.5$	\$4.0 (4.4%)	24.7 (2.7%)	\$0.7 (5.5%)	\$0.7 (0.5%)	\$3.3 (4.9%)
$\alpha = -0.7$	\$5.4 (5.9%)	-16.1 (1.7%)	\$3.1 (29.4%)	\$2.2 (1.5%)	\$3.0 (5.5%)

24.6 (2.6%)

 $\alpha = -0.9$

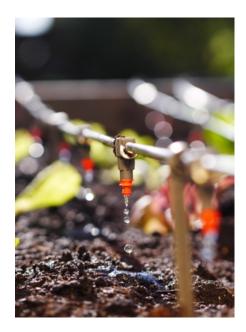
\$4.8 (5.3%)

\$2.0 (18.8%)

\$1.9 (1.4%) \$2.9 (6.5%)

Discussion

- I. Price stability controls generate private/social costs
 - Subsidies do not come for free
 - Tariffs need to provide incentives for multipurpose operations


 But harder for more water uses and non-market values

Discussion

- 3. Price stability controls can prevent efficient water reallocation to irrigation
 - Dynamic inefficiency
 - Locking in high prices (e.g. RET)
- 4. "One policy instrument, one objective"
 - Tinbergen principle applies to water pricing (but some exceptions)
 - Alternative irrigation support measures:
 - Cash transfers & rebates
 - Extension & supply-chain support

Thank you

paul.wyrwoll@anu.edu.au

References

Chu, Long, and R. Quentin Grafton. 2018. "Policy Note: 'Short-Term Pain for Long-Term Gain: Urban Water Pricing and the Risk-Adjusted User Cost." *Water Economics and Policy*: 1871005.

Feldman, Stephen L. 1972. "Equity and Efficiency in Public Sector Pricing: The Optimal Two-Part Tariff." *The Quarterly Journal of Economics* 86(2): 175–87.

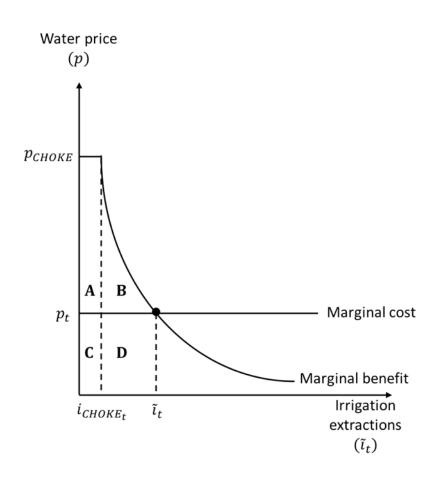
Khadem, M. et al. 2018. "Estimating the Economic Value of Interannual Reservoir Storage in Water Resource Systems." *Water Resources Research* 54(11): 8890–8908.

Lopez-Nicolas, A. et al. 2018. "Design and Assessment of an Efficient and Equitable Dynamic Urban Water Tariff. Application to the City of Valencia, Spain." *Environmental Modelling and Software* 101: 137–45.

Macian-Sorribes, H., M. Pulido-Velazquez, and A. Tilmant. 2015. "Definition of Efficient Scarcity-Based Water Pricing Policies through Stochastic Programming." *Hydrology and Earth System Sciences Discussions* 12(1): 771–99.

Moncur, James E T, and Richard L Pollock. 1988. "Scarcity Rents for Water : A Valuation and Pricing Model." Land Economics 64(1): 62–72.

Olmstead, Sheila M., and Robert N. Stavins. 2009. "Comparing Price and Nonprice Approaches to Urban Water Conservation." *Water Resources Research* 45(4).

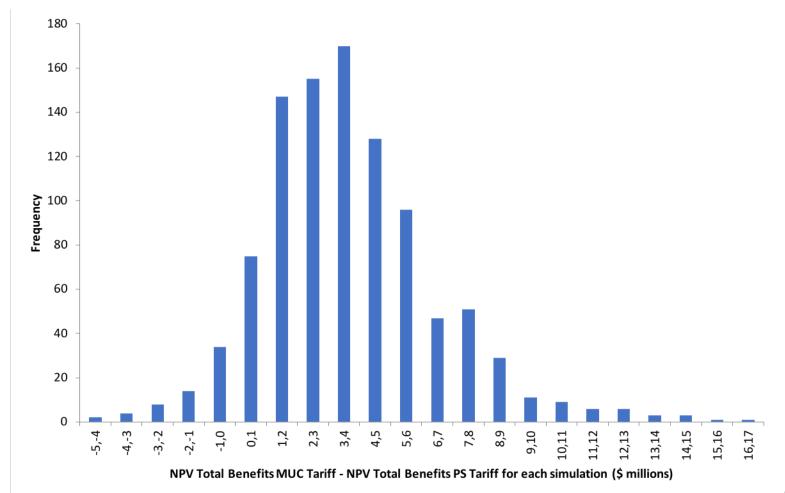

Pulido-Velazquez, M., E. Álvarez Mendiola, and J. Andreu Álvarez. 2013. "Design of Efficient Water Pricing Policies Integrating Basinwide Resource Opportunity Costs." *Journal of Water Resources Planning and Management* 139(5): 583–92.

Renzetti, Steven. 1992a. "Evaluating the Welfare Effects of Reforming Municipal Water Prices." *Journal of Environmental Economics and Management* 22(2): 147–63.

Turvey, Ralph. 1976. "Analyzing the Marginal Cost of Water Supply." Land Economics 52(2): 158–68.

Additional slides

Calculating irrigation profits



Irrigation profits (A+B) = Total benefits of water extraction (A+B+C+D) -Total costs of water extraction (C+D)

Define inverse demand function and choke price to find profit function

Variable	Mathematical Notation	Value		
Minimum and maximum storage	S _{MIN} , S _{MAX}	150000 ML, 449000 ML		
volume Risk storage level volume	S _{RISK}	164000 ML		
Irrigation buffer storage volume	S _{RISK} S _{IRR}	217000 ML		
Inflows, by season and weather type	$F = \begin{cases} f_{\phi=1,d} & f_{\phi=1,n} & f_{\phi=1,w} \\ f_{\phi=2,d} & f_{\phi=2,n} & f_{\phi=2,w} \end{cases}$	{18227 ML 22679 ML 39375 ML 59850 ML 88207 ML 122905 ML		
Random inflow shock	ε_t	$\varepsilon_t = \begin{cases} 0.87 \text{ w. p } 0.2 \\ 0.97 \text{ w. p } 0.2 \\ 1 \text{ w. p } 0.2 \\ 1.03 \text{ w. p } 0.2 \\ 1.13 \text{ w. p } 0.2 \end{cases}$		
Evaporation rate of storage	$\xi_t = \begin{cases} \xi_{\phi_t=1} \\ \xi_{\phi_t=2} \end{cases}$	$\left\{\begin{array}{c} 0.138\\ 0.049\end{array}\right\}$		
Seasonal environmental flows	$\xi_t = \begin{cases} \xi_{\phi_t=1} \\ \xi_{\phi_t=2} \end{cases}$ $v_t = \begin{cases} v_{\phi_t=1} \text{ if } \phi = 1 \\ v_{\phi_t=2} \text{ if } \phi = 2 \end{cases}$	$\left\{ {\begin{array}{*{20}c} {4000 \text{ ML}} \\ {1000 \text{ ML}} \end{array} } \right\}$		
Electricity price levels (\$/MWh)	$L = \{L_l L_m L_h\}$	{\$31.96 \$44.40 \$102.31}		
Conversion factor for water releases into energy (MWh/ML)	а	0.5272		
Maximum extractions for hydropower	$x_{MAX,\phi_t} = \begin{cases} x_{MAX,\phi_t=1} \\ x_{MAX,\phi_t=2} \end{cases}$	65681 ML		
Price elasticity of water demand	α	-0.81		
Fixed seasonal irrigation extractions (ML)	$\bar{\iota}_{\boldsymbol{\phi}_t} = \begin{cases} \bar{\iota}_{\boldsymbol{\phi}_t=1} \\ \bar{\iota}_{\boldsymbol{\phi}_t=2} \end{cases}$	(15114 ML) (14895 ML)		
Weather and electricity price transition matrices	See Appendix A3 in Chapter 3			
Carbon market starting price (\$/MWh)	<i>c</i> ₀	\$41.11		
Accreditation per unit of hydroelectricity generated	θ ^c	0.5		
Scaling parameter for the water demand/marginal benefit function	$ \begin{array}{l} \gamma \\ = \begin{cases} \gamma \phi = 1, \ d & \gamma \phi = 1, \ n & \gamma \phi = 1, \ w \\ \gamma \phi = 2, \ d & \gamma \phi = 2, \ n & \gamma \phi = 2, \ w \end{cases} $	$\substack{952477 & 746125 & 503291\\960030 & 735314 & 500033 \end{bmatrix}$		
Choke price for irrigation water (\$/ML)	рсноке	\$611		
Choke volume for irrigation extraction (ML by weather/season)	$ \begin{split} \tilde{\iota}_{CHOKE} \\ = \begin{cases} \tilde{\iota}_{CHOKE_{\phi=1,d}} & \tilde{\iota}_{CHOKE_{\phi=1,n}} & \tilde{\iota}_{CHOKE_{\phi=1,w}} \\ \tilde{\iota}_{CHOKE_{\phi=2,d}} & \tilde{\iota}_{CHOKE_{\phi=2,n}} & \tilde{\iota}_{CHOKE_{\phi=2,w}} \end{cases} \end{split} $	5274 ML 4131 ML 2787 ML 5316 ML 4072 ML 2769 ML		
Number of time periods	t	20 seasons (10 years)		
Initial reservoir volume	S ₀	310000 ML		
Discount factor (per seasonal time- step)	ρ	0.015		
Ratio of electricity purchase cost to the electricity price level	ψ	1.27		
Maximum/Minimum volume of electricity supply per season	e _{MAX} , e _{MIN}	124585 MWh, 37375 MWh		
Probability of electricity purchases (Price Stability Tariff)	ω	0.05		

Histogram of inefficient water allocation

