ACCOUNTING FOR FREE DIGITAL SERVICES AND HOUSEHOLD PRODUCTION - AN APPLICATION TO FACEBOOK

Paul Schreyer Deputy Director OECD Statistics and Data Directorate

EMG Workshop UNSW December 2019

1. This Issue – valuing 'free' digital services

2. Who produces? And how does production take place?

3. Extended Measure of Activity

4. Discussion and conclusions

1. The issue – valuing free digital services

BCDEF

- Brynjolfsson, Collis, Diewert, Eggers and Fox (2018)
 - Incentive compatible choice experiments
 - Willingness to forego digital services, in particular access to Facebook:

Photo by Thought Catalog on Unsplash

around 500\$/year: shadow
price (marginal consumer
surplus) not in NA

- BCDEF (a) integrate findings into the **GDP price index** using a reservation price approach
- Real "GDP-B" growth > 0.5% points/year more than U.S. GDP

- BCDEF (b) integrate findings into nominal GDP measure (total income approach) without modifying price indexes
- Similar effects for "GDP-B"

But who produces? And how does production take place?

A product, free or not, needs to be produced somewhere

- BCDEF don't specify who produces free digital service but the implied producer is social media/software firm
- Financing via advertisements or data sales
- Facebook's measured value-added = income generated in the advertising or data sales business
- Problem: measured value-added ≠ shadow price*#of users

- Facebook (2017)
- 25\$/user/year (approximative advertising revenues) < 500\$/user/year (willingness to forego)
- (i) Facebook does not act as a profit maximiser (unlikely),
- (ii) BCDEF findings are vastly overstated (implausible),
- (iii) the value measured by BCDEF relates to a *different* act of production and consumption, *not* to the implicit barter transaction between consumers and Facebook.

- Production process by households who use:
 - time
 - capital services (hardware, software) including freely provided
- to produce (typically, leisure) services associated with the use of social media
- Neither their prices nor quantities need to coincide with the advertising or data sales values of digital service provider
- The latter are inputs to, the former are outputs of household production

Photo by David Boca on Unsplash

- Differences between valuation of services by consumers and revenues registered by Facebook can be fully and consistently accommodated
- HH own account production is today outside the SNA production boundary

$$q_F = F(K_F, t_F, Z)$$

- q_F : quantity of own-account services
- K_F : capital services input, including digital services
- Z: size of network

Photo by David Boca on Unsplash

 $c(q_F, u_F, w_F, Z) = min_{K_F, t_F} [u_F K_F + w_F t_F : F(K_F, t_F, Z) \ge q_F]$

- u_F : user cost of capital services
- w_F : implicit wage rate

$$p_F \equiv c^F(u_F, w_F, Z).$$

 p_F : unit cost of own-account services

Photo by David Boca on Unsplash

Willingness to forego $=c(q_F, u_F, w_F, Z) - c(0, u_F, w_F, Z)$ $=q_F c^F(u_F, w_F, Z) = p_F q_F$

Price index, quality adjusted for network size

$$P_F(u_F^1, w_F^1, Z^1, u_F^0, w_F^0, Z^0) = \frac{c^F(u_F^1, w_F^1, Z^1)}{c^F(u_F^0, w_F^0, Z^0)}.$$

$$\begin{split} &\ln P_F^T \left(u_F^1, w_F^1, Z^1, K_F^1, t_F^1, u_F^0, w_F^0, Z^0, K_F^0, t_F^0 \right) \\ &= 0.5 \left(\frac{u_F^0 K_F^0}{u_F^0 K_F^0 + w_F^0 t_F^0} + \frac{u_F^1 K_F^1}{u_F^1 K_F^1 + w_F^1 t_F^1} \right) ln \left(\frac{u_F^1}{u_F^0} \right) \\ &+ 0.5 \left(\frac{w_F^0 t_F^0}{u_F^0 K_F^0 + w_F^0 t_F^0} + \frac{w_F^1 t_F^1}{u_F^1 K_F^1 + w_F^1 t_F^1} \right) ln \left(\frac{w_F^1}{w_F^0} \right) \\ &+ 0.5 \left(\frac{\partial lnc^F \left(u_F^0, t_F^0, Z^0 \right)}{\partial lnZ} + \frac{\partial lnc^F \left(u_F^1, t_F^1, Z^1 \right)}{\partial lnZ} \right) ln \left(\frac{Z^1}{Z^0} \right) \end{split}$$

$$-\epsilon \equiv \frac{\partial lnc^{F}(u_{F}^{1}, t_{F}^{*1}, Z^{1})}{\partial lnZ}) \leq 0$$

Not observable, 4 simulations

Extended Measure of Activity

Nominal GDP

$$Y^{t} = \sum_{i=1}^{N} p_{i}^{t} q_{i}^{t}.$$
$$\tilde{Y}^{t} = p^{t} \cdot q^{t} + p_{F}^{t} q$$

Nominal EMA

$$\tilde{Y}^t = p^t \cdot q^t + p_F^t q_F^t.$$

GDP deflator

$$lnP(p^{1}, p^{0}, q^{1}, q^{0}) = 0.5 \sum_{i=1}^{N} \left(\frac{p_{i}^{1}q_{i}^{1}}{p^{1} \cdot q^{1}} + \frac{p_{i}^{0}q_{i}^{0}}{p^{0} \cdot q^{0}} \right) ln(\frac{p_{i}^{1}}{p_{i}^{0}})$$

$$\begin{split} &ln\tilde{P}(p^{1},p^{0},p_{F}^{1},p_{F}^{0},q_{F}^{1},q_{F}^{0},q^{1},q^{0}) \\ &= 0.5\sum_{i=1}^{N} \left(\frac{p_{i}^{1}q_{i}^{1}}{p^{1}\cdot q^{1}+p_{F}^{1}q_{F}^{1}} + \frac{p_{i}^{0}q_{i}^{0}}{p^{0}\cdot q^{0}+p_{F}^{0}q_{F}^{0}} \right) ln(\frac{p_{i}^{1}}{p_{i}^{0}}) \\ &+ 0.5\left(\frac{p_{F}^{1}q_{F}^{1}}{p^{1}\cdot q^{1}+p_{F}^{1}q_{F}^{1}} + \frac{p_{F}^{0}q_{F}^{0}}{p^{0}\cdot q^{0}+p_{F}^{0}q_{F}^{0}} \right) ln(\frac{p_{F}^{1}}{p_{F}^{0}}) \end{split}$$

EMA deflator

% difference in nominal levels EMA – GDP:

 $\frac{\tilde{Y}^t - Y^t}{Y^t}$

% point difference in real growth rates EMA – GDP:

$$= ln \frac{\tilde{Y}^1}{\tilde{Y}^0} - ln \frac{Y^1}{Y^0} \quad - \quad (ln \tilde{P} - ln P).$$

Variable		Unit	Acronym	Year	
				2004	2017
Time spent on Facebook	1	Minutes per day		20	40
	2	Hours/year	t_F	122	243
WTA (BCDEF[7])	3	\$/year			506
User costs					
—all ICT capital services	4	\$/hour		0.01	0.03
—Facebook ICT capital services	5=4*2	\$/year	$u_F K_F$	1.46	6.58
Implied wage rate	6	\$/hour	w_F $<$	1.58	2.05
Value of leisure time per person	7=6*2	\$/year	$w_F t_F$	192	499
Value of leisure services per person	8=7+5	\$/year	$p_F q_F$	194	506

 Avoids complications of time valuation (Diewert, Fox and Schreyer 2017)

Variable		Unit	Acronym	Year	
				2004	2017
Change of wage rate for leisure services		Index	w_F^1/w_F^0	1.00	1.30
Price change of ICT capital services		Index	u_K^1/u_K^0	1.00	0.3604
U.S. Facebook users		Million persons	Z	0.10	200
Törnqvist unit cost index of leisure services		Index	p_F^1/p_F^0		
—no quality adjustment	$\epsilon = 0$			1.000	1.2493364
—quality adjustment	$\epsilon = 0.5$			1.000	0.0279360
—quality adjustment	$\epsilon = 1.0$			1.000	0.0006247
—quality adjustment	$\epsilon = 1.5$			1.000	0.0000140

Real GDP		Index	$(Y^1/Y^0)/(P^1/P^0))$	1.000	1.265
		% change per year	$ln(Y^1/Y^0) - ln(P^1/P^0)$		1.81
Real Extended Measure of Activity		Index	$(\tilde{Y}^1/\tilde{Y}^0)/(\tilde{P}^1/\tilde{P}^0)$		
—no quality adjustment	$\epsilon = 0$			1.000	1.260
—quality adjustment	$\epsilon = 0.5$			1.000	1.272
—quality adjustment	$\epsilon = 1.0$			1.000	1.285
—quality adjustment	$\epsilon = 1.5$			1.000	1.297
Real Extended Measure of Activity		% change per year	$ln(\tilde{Y}^1/\tilde{Y}^0) - ln(\tilde{P}^1/\tilde{P}^0)$		
—no quality adjustment	$\epsilon = 0$	100 000 1850 195 000			1.77
—quality adjustment	$\epsilon = 0.5$				1.85
—quality adjustment	$\epsilon = 1.0$				1.93
—quality adjustment	$\epsilon = 1.5$				2.00
Difference: Real Extended Measure of			$ln(\tilde{Y}^1/\tilde{Y}^0) -$		
Activity minus Real GDP		% point per year	$ln(Y^{1}/Y^{0})$		\frown
—no quality adjustment	$\epsilon = 0$		$-[ln(\tilde{P}^1/\tilde{P}^0) - ln(P^1/P^0)]$		-0.04
—quality adjustment	$\epsilon = 0.5$			(0.04
—quality adjustment	$\epsilon = 1.0$				0.12
—quality adjustment	$\epsilon = 1.5$	3 A			0.19

Labour productivity

20

Discussion and conclusions

 Consistent treatment of user valuations that deviate from market revenues by the corporations that provide free services

- Unit costs of own-account production Gross and consumption are conceptually clearly identified
- Network effects as quality adjustment to unit costs but elasticity remains to be estimated
- Macro-effects are visible as per EMA

FIGURES

23

Ok for EMA – but also for GDP?

- Type 3 household production (leisure) before type 2 (cooking a meal, home care) inside the production boundary?
- Robustness of estimates
- Communication and trust in statistics
 - higher level of imputed consumption and income and lower inflation don't match perceptions
 - Central Banks happy with EMA?
 - the end of unemployment?

- HH activities gain in importance in modern societies as a consequence of digitalisation and demographic developments
- Research into their measurement is important and needs encouragement
- From there to bringing them inside GDP is still a long way however
- Key = interaction with stakeholders

Thank you!

Paul.Schreyer@oecd.org