

UNSW Business School Centre for Applied Economic Research

MFP Measurement Using BLADE: Insights, Challenges and Future Directions

by Kevin J. Fox

EMG Workshop UNSW Sydney 5-6 December 2019

MFP Calculation using BLADE

- Collaboration with the ABS (MAVS) (Franklin Soriano, Kay Cao), supported by Treasury and the Economic Data Analysis Network.
- Carmit Schwartz has been a partner in this work.
- Measurement of capital and Multifactor Productivity using firm level data.
- Most studies have so far used labour productivity.
- Many challenging problems need to be addressed before the data can be effectively used to answer policy relevant questions.

MFP Calculation using BLADE

- 3. Preliminaries.do to weed out "firms" with all zeros and missing values, GST adjustments, calculation of va etc., and merging with auxiliary data.
- 4. LabourCheck.do: Checks the labour data. Can have case the following problematic cases:
 - Case 13: fte missing, wages=0, but revenue positive
 - Case 14: fte missing, wages missing, but revenue positive
 - Case 15: fte missing, wages positive
 - Case 25: fte positive, wages=0
 - Case 26: fte positive, wages missing
 - (NB: 26 potentially problematic cases were considered, with 5 being found in the data)

MFP Calculation using BLADE

- 5. DivisionCheck.do: Checks if there are ANZSIC code conflicts with the assigned division, and deletes firms for which there is a mismatch.
- 6. MFP.do: Deals with labour problems, calculates capital input, deletes outliers and constructs MFP estimates. Uses the data produced by DivisionCheck.do
- 5. Plots.do: Plots growth and level series from BLADE data and the ABS industry MFP data cube.

Some Challenges

- 1. ANZSIC and Division code mismatches.
- 2. Asset disposals in Gross Output, and hence Value Added
- 3. Negative Value Added and the construction of MFP
- 4. Missing labour data
- 5. Capital measurement

- In BLADE S15, the ABS has backcast ANZSIC codes when a firm changes industries.
- It has (effectively) forward cast Division codes.

• Made up example: A firm with ANZSIC 3020 should be in Division E Construction. If it started in Division A and shifted to E in 2016, then:

Year	2002	2003		2015	2016
<u>Actual</u>					
ANZSIC	0529	0529	0529	0529	3020
Division	Α	Α	Α	Α	E
BLADE S15					
ANZSIC	3020	3020	3020	3020	3020
Division	Α	Α	Α	Α	Α
BLADE S1617					
ANZSIC	3020	3020	3020	3020	3020
Division	Е	E	E	E	E

- Hence from BLADE S15, we know that there was a change but don't know when the change happened.
- Potentially very problematic, especially for frontier analysis, analysis of firm exit and entry.
- Only solution given available data is to delete firms with a mismatch of ANZSIC and Division codes
- In the latest version of the BLADE (S1617), conscious of the inconsistency, the ABS has applied the same backcasting to both ANZIC and Division codes.
- Hence, it's now impossible to identify the firms that have been misallocated to Divisions.

A solution is on its way!

- The ABS is producing a 'point-in-time' ANZSIC file that can be merged to the existing BLADE Frame.
- This file will reflect the actual ANZSIC of the unit in each year of the BLADE time series.
- It is expected that this new file will be available in December 2019.

Asset Disposals

- The usual output measure is Total Sales from BAS data (TURNOVER).
- This includes revenues from all sources including asset disposals. (Same for profit from BIT data.)
- One-off large sales of assets may get caught by outlier detection methods, but not a pattern of continuous sales leading up to e.g. a global financial crisis.
- BLADE S15 only provides information on "Termination value of intangible depreciating assets", but not "Termination value of other depreciating assets"
- Output and capital should be adjusted for asset sales, but this is not possible without information on the disposal of (tangible) assets. Available in S1617 from 9 November!

Negative Value Added

- VA= (GO Intermediates) can be negative. Firms can make losses in any period, and these can be persistent (e.g. Uber).
- Deflating, get real VA as negative. A negative real output is an input. Not sensible in the context of a firm producing output (e.g. Uber rides) but making losses.
- A common solution is to set negative VA to zero. Not ideal.
- Suggests the following:
 - VA based MFP only makes sense at some level of aggregation so that aggregate VA is positive.
 - GO based MFP (i.e. KLEMS) is the only sensible measure at the firm level.

Missing Labour Data

wages=total wage bill; fte=full time equivalent; go=gross output; ==. means missing; ==0 means equal to zero

- 1. Work out average wage rate at the 4 digit ANZSIC level.
- 2. Some averages are zero, as there are no firms that have positive wages recorded in their ANZSIC code. For these firms, use the division average wage. [Very few cases.]
- 3. For fte==., wages==0 and go>0 (Case 13):

 Replace average wage rate (0) with division average wage rate

 Replace fte=1, wages=(division av. Wage)*1
- 4. For fte==., wages==. and go>0 (Case 14):

 Replace average wage rate (missing) with division average wage rate

 Replace fte=1, wages=(division av. Wage)*1

Missing Labour Data

5. For fte==., wages positive, use a regression approach (Case 15):

Regress In(fte) on In(realwages) and time dummies. Replace the missing fte observations with the predicted values.

6. For fte positive, wages==0 (Case 25):

Replace wages= (division av. wage)*fte

7. For fte positive, wages==. (Case 26):

Replace wages=(division av. wage)*fte

Capital

NB: BIT data has only (historical) book value for some firms. OECD approach a mix of methods, meaning that relative levels and growth rate differences may be determined by the method used.

- 1. Starting value: (average investment)/(depreciation rate + investment growth rate).
- 2. Then PIM to get k_stock_real
- 3. uc = capital_def*(intrate infla + (infla)*delta);
 infla=cpi rate, delta from the ABS
- 4. ucv= uc*k_stock_real
- 5. payts= wages + ucv
- 6. Labour share = wages/payts, Capital share = 1-Labour share

MFP

- 1. Calculate MFP growth using a Törnqvist index for inputs.
- 2. Division aggregates by weighting using payts_share=payts/div_payts. That is, the firm's share in total Division payments to labour and capital. Weighted geometric mean with two-period arithmetic average share weights.
- 3. Outliers: try the three OECD methods (3sd, Tukey, percentiles). Only using output growth and input growth. Also try the IMF method of doing a split by employment numbers (headcount), then outlier deletion on each employment size class. Also code for two variants of this method is provided.

Future Directions

Work agenda includes:

- 1. Take into account asset disposals now data are available.
- 2. Comparisons of different aggregation methods and levels, and resulting policy insights regarding growth areas of the economy, e.g.:
 - By ownership type
 - By industry (ANZSIC codes and divisions)
- 3. Gross output versus value added
- 4. Impact on policy implications from using alternative imputation methods.
- 5. Further investigation of implications of use of alternative outlier detection methods.

Agriculture, Forestry and Fishing

Mining

Manufacturing

Electricity, Gas, Water and Waste Services

Construction

Wholesale Trade

Retail Trade

Accommodation and Food Services

Transport, Postal and Warehousing

Information, Media and Telecommunications

Financial and Insurance Services

Rental, Hiring and Real Estate Services

Professional, Scientific and Technical Services

Administrative and Support Services

Public Administration and Safety

Education and Training

Health Care and Social Assistance

Arts and Recreation Services

Other Services

